Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to such treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and -5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased of cell proliferation, and increased cell cycle arrest and apoptosis in comparison to only irradiated cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation and cell cycle regulation. To our knowledge, this is the first study to describe role of miR-338-5p in GBM and its potential to improve sensitivity of GBM to radiation.
MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response.
Specimen part, Cell line
View SamplesBackground: Studies in mice have shown that PPAR is an important regulator of lipid metabolism in liver and a key transcription factor involved in the adaptive response to fasting. However, much less is known about the role of PPAR in human liver. Here we set out to study the function of PPAR in human liver via analysis of whole genome gene regulation in human liver slices treated with the PPAR agonist Wy14643.
The impact of PPARα activation on whole genome gene expression in human precision cut liver slices.
Sex, Specimen part, Treatment, Subject, Time
View SamplesLittle is known about the early transcriptional events in innate immune signaling in immature and tolerogenic monocyte-derived dendritic cells (DCs), the professional antigen-presenting cells of our immune system. TLR ligands usually induce a proinflammatory transcriptional response, whereas IL10 and/or dexamethasone induce a more tolerogenic phenotype.
MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters.
Specimen part
View SamplesGENES ASSOCIATED WITH THE CELL CYCLE, LINEAGE COMMITMENT AND IMMUNOMODULATORY POTENTIAL DISCRIMINATE HUMAN POSTNATAL STEM CELLS OF DIFFERENT ORIGIN.
Functional differences between mesenchymal stem cell populations are reflected by their transcriptome.
No sample metadata fields
View SamplesIn this study we aimed to identify a baseline intrahepatic transcriptional signature associated with response in chronic hepatitis B patients treated with peginterferon-alfa-2a (peg-IFN) and adefovir.
An intrahepatic transcriptional signature of enhanced immune activity predicts response to peginterferon in chronic hepatitis B.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Cell line, Treatment, Time
View SamplesOne major class of anti-cancer drugs targets topoisomerase II to induce DNA double-strand breaks and cell death of fast growing cells. In vitro experiments showed that doxorubicin can induce histone eviction as well as DNA damage, while etoposide can only induce DNA damage. Here, we compare the transcription responses of different tissues to doxorubicin or etoposide treatment in vivo.
Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin.
Age, Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.
Sex, Specimen part, Treatment, Subject, Time
View SamplesBackground: The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA; also known as INT-747 or 6-ethyl-chenodeoxycholic acid), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA (INT-747) alters hepatic expression of many genes. However, no data are available on the effects of OCA in human liver. Here, we generated gene expression profiles in human precision-cut liver slices (hPCLS) after treatment with OCA.
Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.
Sex, Specimen part, Treatment, Time
View SamplesBackground: The bile acid-activated farnesoid X receptor (FXR) is a nuclear receptor regulating bile acid, glucose and cholesterol homeostasis. Obeticholic acid (OCA; also known as INT-747 or 6-ethyl-chenodeoxycholic acid), a promising drug for the treatment of non-alcoholic steatohepatitis (NASH) and type 2 diabetes, activates FXR. Mouse studies demonstrated that FXR activation by OCA (INT-747) alters hepatic expression of many genes. However, no data are available on the effects of OCA in human liver. Here, we generated gene expression profiles in human precision-cut liver slices (hPCLS) after treatment with OCA.
Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid.
Sex, Specimen part, Treatment, Subject, Time
View Samples