Background and Aims: Recent identification of intracellular DNA sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and autoimmunity suggests a role for these processes in liver pathology. The presence of these pathways in the liver and their role in HBV infection is unknown. Methods: In order to characterize the role of DNA sensing pathways in the liver, we utilized in vitro models. Microarray was performed on DNA treated and HBV infected hepatoma primary human hepatocytes. Results: Here we show that HBV infection and foreign DNA results in a significant innate immune response characterized by the production of inflammatory chemokines.
Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.
Specimen part, Treatment
View SamplesSince direct pharmacological inhibition of RAS has thus far been unsuccessful, we explored system biology approaches to identify synergistic drug combination(s) that can mimic direct RAS inhibition. Leveraging an inducible mouse model of NRAS-mutant melanoma, we compare pharmacological MEK inhibition to complete NRAS-Q61K extinction in vivo. NRAS-Q61K extinction leads to a complete and durable tumor regression by enhancing both apoptosis and cell cycle arrest. By contrast, MEK inhibition only produces tumor stasis at best and we find that it robustly activates apoptosis but does not significantly impede proliferation.
Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.
Specimen part
View SamplesWe sought to understand the pathways involved in NRAS extinction over time using a doxycycline-dependent, inducible mouse model of melanoma. This data provides insights into the temporal dynamics of downstream NRAS signaling and helps to correlate differentially affected pathways.
Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Initial genome sequencing and analysis of multiple myeloma.
Specimen part, Disease, Disease stage
View SamplesThe MMRC reference collection is a dataset of gene expression profiling, array comparative genomic hybridization, and re-sequencing created as a resource for the Multiple Myeloma research community.
Initial genome sequencing and analysis of multiple myeloma.
Specimen part
View SamplesIn this study we demonstrate that the lung mononuclear phagocyte system comprises three interstitial macrophages (IMs), as well as alveolar macrophages (AMs), dendritic cells and few extravascular monocytes. Through cell sorting and RNAseq analysis we were able to identify transcriptional similarities and differences between the three pulmonary IM subtypes, with reference to the more well-characterized alveolar macrophage Overall design: Pulmonary Interstitial and Alveolar macrophages were FACS sorted from the lungs of steady state 8-10 week old B6 mice, in triplicate. Extracted RNA was examined by RNAsequencing. The tar archive GSE94135_jakubzick_2019*tar available at the foot of this page contains the supplementary processed data used for comparisons with data in GSE132911. Data were processed as described in GSE132911.
Three Unique Interstitial Macrophages in the Murine Lung at Steady State.
Specimen part, Cell line, Subject
View SamplesMacrophages (MF) have been shown to contribute to fibrogenesis, however the underlying mechanisms and specific MF subsets involved remain unclear. Lung MF can be divided into two subsets: Siglec-Fhi resident alveolar MF and CD11bhi MF that primarily arise from immigrating monocytes. RNA-seq analysis was performed to compare these MF subsets during fibrosis. CD11bhi MF, not Siglec-Fhi MF, expressed high levels of pro-fibrotic chemokines and growth factors. Overall design: C56BL/6 WT mice were treated intratracheally with bleomycin. 8 days later, CD64+Mertk+ MF were sorted into Siglec-F(high) and CD11b(high) subsets. SiglecF(high) MF from naïve mice were also sorted. RNA was isolated and RNA-seq was performed to compare MF subsets.
Deletion of c-FLIP from CD11b<sup>hi</sup> Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of gamma-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Molecular characterization of the response to PF-03084014 plus glucocorticoids through gene expression profiling revealed transcriptional upregulation of the glucocorticoid receptor as the mechanism mediating the enhanced glucocorticoid response. Moreover, treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment was highly effective at reversing PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results suggest that combination of PF-03084014 treatment with glucocorticoids may be well-tolerated and highly active for the treatment of glucorticoid-resistant T-ALL.
Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.
Cell line, Treatment
View SamplesPPAR is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPAR in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPAR, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPAR as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPAR agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPAR deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPAR sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense.
Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity.
Sex, Treatment
View Samples