This SuperSeries is composed of the SubSeries listed below.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell lines SKBR3). Remarkably, about 75% of the significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ER17p. The different ER spectra of the used cell lines allowed us to extract a specific ER17p signature related to ER and its variant ER36. With respect to ER, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ER36 it exerts inhibitory events on inflammation and cell cycle and inhibition of EGFR signaling. This is the first work reporting ER36 specific transcriptional effects. The fact that a number ER17p-induced transcripts is different from those activated by E2 revealed that the apoptosis and actin modifying effects of ER17p are independent from the ER-related actions of the peptide.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell line MDA-MB-231.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell line T47D.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesPromoter hypermethylation and transcriptional silencing is a common epigenetic mechanism of tumour suppressor inactivation in cancer, including malignant brain tumours.
Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma.
Specimen part, Treatment
View SamplesThe exposure to and contamination by Persistent Organic Pollutants (POPs), which include pesticides used worldwide and polyaromatic hydrocarbons, is detrimental to human health and diverse ecosystems. Although most mechanistic studies have focused on single compounds, living organisms are exposed to multiple environmental xenobiotics, simultaneously, throughout their lives. The experimental evidence useful for assessing the effects of exposure to pollutant mixtures is scarce. We investigated the effects of exposure to a combination of two POPs, which employ different xenosensors, on global gene expression in a human hepatocyte cell model, HepaRG.
Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism.
Specimen part
View SamplesThe development of high-throughput genomic technologies has revealed that a large fraction of the genomes of eukaryotes is associated with the expression of noncoding RNAs. One class of noncoding RNA, the cis-natural antisense transcripts (cis-NATs), are particularly interesting as they are at least partially complementary to the protein-coding mRNAs. Although most studies described cis-NATs involved in the regulation of transcription, a few reports have shown recently that cis-NATs can also regulate translation of the cognate sense coding genes in plants and mammals. In order to identify novel examples of translation regulator cis-NATs in Arabidopsis thaliana, we designed a high-throughput experiment based on polysome profiling and RNA-sequencing. Expression of cis-NATs and translation efficiency of the cognate coding mRNAs were measured in roots and shoots in response to various conditions, including phosphate deficiency and treatment with phytohormones. We identified several promising candidates, and validated a few of them experimentally, in Arabidopsis thaliana transgenic lines over-expressing in trans the translation regulator candidate cis-NATs. Overall design: total RNA and polysomal RNA was sequenced from Arabidopsis thaliana whole seedlings grown in high or low pohsphate content, or from roots or shoots from seedlings treated or not with different phytohormones (Ctrl, IAA, ABA,MeJA and ACC). 3 biological replicates were analyzed for each of the 12 experimental conditions.
Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions.
Specimen part, Treatment, Subject
View SamplesPrimary liver tumours include hepatocellular carcinomas (HCC), cholangiocarcinomas (CC) and a group of rare tumours exhibiting biliary and hepatocytic differentiation called combined hepatocholangiocarcinomas (cHCC-CC). To better define this latter group, we take advantage of a series of these tumours based on their morphological characteristics and we performed transcriptional analysis allowing thereafter global comparison with published data. We show that most cHCC-CCs express progenitor cell traits, are committed to biliary lineage and are mainly associated to the activation of Wnt/beta-catenin and TGFbeta signalling pathways. Wnt/beta-catenin pathway activation in cHCC-CC is evidenced by the expression of both its direct targets such as LEF1 and EPCAM. In addition, extracellular matrix (ECM) genes and ECM-remodelling genes which are upon the control of TGF profibrotic program were found up-regulated in cHCC-CC. Interestingly, we show that CC and most cHCC-CC share characteristics associated to a subtype of poorly differentiated HCC suggesting that these tumours could originate from a stem/progenitor cell. The plasticity of these cells may explain the phenotypical heterogeneity of these tumors with the maintenance of some hepatocellular differentiation features such as albumin expression. Interestingly, this is shared by at least one third of CC, raising the hypothesis of a potential continuum between CC, cHCC-CC and poorly differentiated HCC.
Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways.
Sex, Specimen part
View SamplesUnr (upstream of N-ras) is a cytoplasmic RNA-binding protein with cold shock domains, involved in regulation of messenger RNA stability and translation. To address the biological role of Unr, we inactivated the unr gene by homologous recombination in mice and embryonic stem (ES) cells. Embryos deficient for Unr die at mid-gestation, and the main phenotypic defects observed, growth deficiency and absence of neural tube closure, suggest a role of Unr in the balance proliferation/differentiation during early development. Here, we report that in Unr-null ES cell cultures, we observed a greater proportion of partially differentiated colonies, together with dispersed, refractile cells with stellate morphology, reminiscent of primitive endoderm (PrE) cells. DNA microarray, immunostaining, and RNA analyses revealed that Unr-null ES cells express a set of PrE markers, including the GATA6 transcription factor, a key inducer of PrE. Although Unr-deficient cells did not downregulate the pluripotency regulators Oct4, Nanog and Sox2, they grew more slowly than the wild-type lines, and their clonogenicity was lower. Silencing of Unr by RNA interference in ES E14 (129 genetic background) resulted in similar phenotypic and molecular changes as those observed in unr-/- ES cells (C57Bl/6 background). Finally, we show that ectopic expression of Unr in unr-/- ES cells partially reverses the endoderm-specific gene expression and the differentiation phenotype.
The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.
Sex, Age, Specimen part, Disease stage
View Samples