This SuperSeries is composed of the SubSeries listed below.
Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.
Age
View SamplesRibosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of B6J-nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA Arg(UCU) tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2 (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2 kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in B6J-nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.
Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.
No sample metadata fields
View SamplesIn higher eukaryotes, the large numbers of nuclear-encoded tRNA genes partially ensure the robustness of cytoplasmic protein translation. Here we discover that a loss-of-function in n-Tr20, a member of the nuclear-encoded tRNA Arg UCU family that is expressed specifically in the central nervous systems leads to low but detectable levels of ribosome stalling. In the absence of GTPBP2, a novel binding partner of the ribosome recycling protein Pelota, ribosome stalling increases, leading to widespread neurodegeneration. Our results not only define GTPBP2 as a ribosome rescue factor, but also unmask the disease potential of mutations in nuclear-encoded tRNA genes. In this submission we provide ribosome footprinting data from the cerebella of four strains derived from the C57BL/6J strain with combinations of n-Tr20 and GTPBP2 mutations. Overall design: Examination of ribosome stalling in cerebella from 4 mouse strains derived from the: C57BL/6J (B6J) strain. The nmf205-/- strain has a homozygous mutation in the gene GTPBP2 while the B6J strain has normal GTPBP2. The n-Tr20 J/J strain has a defect in the n-Tr20 tRNA while the n-Tr20 N/N strain has a functional n-Tr20 tRNA. The 4 strains are the 2x2 combinations of these defects and correctly functioning sequences. 2 replicates for each strain. Please note that only BAM files are included in the records since they form the basis of the study''s conclusions. The raw data ribosomal RNA have been filtered and then unique reads mapping to mm10 were computed using tophat and igenome annotations.
RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration.
No sample metadata fields
View SamplesWe analyzed publicly available mucosal gene expression data from Crohn''s disease (CD) patients pre- and post-infliximab therapy and found that a series of gene expression signature that remains abnormal even if patients achieve clinical remission. Using CMap approach to discover novel therapeutic target for untreatable mechanism of anti-TNFa mAb therapy, we have identified MEK inhibitor exhibiting negatively-correlated effects on reference signature match infliximab therapy untreatable signature. Our findings provide the rationale for testing MEK inhibitor to identify a novel mechanism of action for CD. Gene expression profile was performed to analyze the gene modulation induced by a highly selective MEK inhibitor, and to evaluate whether it normalized reference residual CD signature in vitro. Overall design: LoVo, a human colorectal cancer cell line, was treated with MEK inhibitor for 24 hours across ten dose response conditions (0.03–1,000 nM), and amplicon sequencing was performed on the Ion Torrent platform. Effects of MEK inhibitor were compared with that of DMSO-treated control. MEK inhibitor (compound 33 in Bioorg. Med. Chem. Lett. 22 (2012) 2411 2414))
Gene Signature-Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn's Disease.
Disease, Cell line, Treatment, Subject
View SamplesWe analyzed publicly available mucosal gene expression data from Crohn''s disease (CD) patients pre- and post-infliximab therapy and found that a series of gene expression signature that remains abnormal even if patients achieve clinical remission. Using CMap approach to discover novel therapeutic target for untreatable mechanism of anti-TNFa mAb therapy, we have identified MEK inhibitor exhibiting negatively-correlated effects on reference signature match infliximab therapy untreatable signature. Our findings provide the rationale for testing MEK inhibitor to identify a novel mechanism of action for CD. Using an activated T cell trasnfer colitis model, a highly selective MEK inhibitor showed therapeutic efficacy and improved the histological changes. To dissect molecular mechanisms, we performed global gene expression profile by RNA-sequencing on the Ion Torrent platform to identify broad scale changes in gene expression treated with MEK inhibitor compared to anti-TNFa mAb. Overall design: Splenocytes from BALB/c female mice were activated with Concanavalin A (4 µg/mL), and recombinant human IL-2 (10 ng/mL, R&D systems) for 3 days. CD4+ T cells were isolated by MACS separation systems, and then 2 x105 activated CD4+ T cells were intravenously injected into female SCID mice (day 0). At day 17, diarrhea score for stool consistency was graded and equally divided into 5 groups as follows: vehicle control, enteric MEK inhibitor microparticles (MPs) at 0.3 mg/kg and at 1 mg/kg, isotype antibody (Isotype mAb) and anti-TNFa antibody (Anti-TNFa mAb). Enteric MEK inhibitor MPs were orally administered once a day from day 17 to day 27. Isotype mAb and anti-TNFa mAb were intraperitoneally injected every 4 days from day 17 at 0.1 mg/mouse. Total RNA from individual cohorts were extracted from the distal part of the colon at day 28, and whole transcriptome sequencing was performed on the Ion Torrent platform. MEK inhibitor (compound 33 in Bioorg. Med. Chem. Lett. 22 (2012) 2411 2414))
Gene Signature-Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn's Disease.
Specimen part, Cell line, Treatment, Subject
View SamplesTo examine irreversible changes in the developing brain following seizures, juvenile inbred mice were intraperitoneally injected with kainate and nicotine.
Increased expression of the lysosomal protease cathepsin S in hippocampal microglia following kainate-induced seizures.
No sample metadata fields
View SamplesThe Shumiya cataract rat (SCR) is a model for hereditary cataract. Two-third of these rats develop lens opacity within 10-11-weeks. Onset of cataract is attributed to the synergetic effect of lanosterol synthase (Lss) and farnesyl-diphosphate farnesyltransferase 1 (Fdft1) mutant alleles that lead to cholesterol deficiency in the lenses, which in turn adversely affects lens biology including the growth and differentiation of lens epithelial cells (LECs). Nevertheless, the molecular events and changes in gene expression associated with the onset of lens opacity in SCR is poorly understood.
Identification of Differential Gene Expression Pattern in Lens Epithelial Cells Derived from Cataractous and Noncataractous Lenses of Shumiya Cataract Rat.
Specimen part, Disease
View SamplesTo assess RNA regulation in FALS for gene expression and alternative processing of RNA in the motor neuron precurssors (MPCs)
Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis.
Specimen part
View SamplesPurpose: This study aimed to identify a novel biomarker or a target of treatment for colorectal cancer (CRC).
Clinical significance of osteoprotegerin expression in human colorectal cancer.
Specimen part
View Samples