Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression proling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR conrmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specic cleaved amplication products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 3559% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>4060%). The same genes also showed extensive promoter methylation in 625% of the tumor samples, thus conrming them as novel candidate TSGs in melanoma.
Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma.
Disease, Disease stage, Cell line, Treatment
View SamplesThe import of nuclear transcribed RNAs into mitochondria is an emerging area that presents tremendous opportunity to develop human metabolic therapeutics. However, our knowledge base is quite limited. Much remains to be discovered regarding specific RNA localization and mechanisms of import. In order to identify novel RNAs imported into mitochondria, all RNAs within the mitochondria were characterized using next generation sequencing technology. Several nuclear transcribed RNAs were found within mitochondrial RNA samples, including nuclear ribosomal RNAs, gamma satellite RNA and VL30 retroelement RNA. The presence of these RNAs within mitochondria coupled with RNA sequencing data (RNAseq) from other laboratories investigating mitochondrial RNA processing, lead us to hypothesize that nuclease treatment of mitoplasts is insufficient for removing contaminating cytoplasmic RNAs. In contrast to traditional methodology, mitochondrial import was evaluated by qRT-PCR after stepwise removal of the outer mitochondrial membrane and subsequent lysis of mitochondria. This allowed identification of RNAs lost from the mitochondria with the same kinetics as mtDNA-transcribed RNAs. This approach provided an improved evaluation of nuclear RNA enrichment within mitochondrial membranes in order to characterize nuclease protection and mitochondrial import and identify false-positive detection errors. qRT-PCR results confirmed the presence of VL30 retroelement RNA within mitochondria and question the hypothesis that the RNA component of RNase P is imported. These results illustrate a reliable approach for evaluating the presence of RNAs within mitochondria and open new avenues of investigation relating to mitochondrial RNA biology and in targeting mitochondrial based therapeutics. Overall design: RNA isolated from purified mitoplasts was sequenced on an Illumina Genome Analyzer IIx
Mitochondrially-imported RNA in drug discovery.
No sample metadata fields
View SamplesThe implantation process begins with attachment of the trophectoderm (TE) of the blastocyst to the maternal endometrial epithelium. Herein we have investigated the transcriptome of mural TE cells from 13 human blastocysts and compared these with those of human embryonic stem cell (hESC)-derived-TE (hESCtroph). The transcriptomes of hESFtroph at days 8, 10, and 12 had the greatest consistency with TE. Among genes coding for secreted proteins of the TE of human blastocysts and of hESCtroph are several molecules known to be involved in the implantation process as well as novel ones, such as CXCL12, HBEGF, inhibin A, DKK3, Wnt 5A, follistatin. The similarities between the two lineages underscore some of the known mechanisms and offer discovery of new mechanisms and players in the process of the very early stages of human implantation. We propose that the hESCtroph is a viable functional model of human trophoblasts to study trophoblast-endometrial interactions. Furthermore, the data derived herein offer the promise of novel diagnostics and therapeutics aimed at practical challenges in human infertility and pregnancy disorders associated with abnormal embryonic implantation.
Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation.
No sample metadata fields
View SamplesEndometriosis, an estrogen-dependent, progesterone-resistant, inflammatory disorder affects 10% of reproductive-age women. It is diagnosed and staged at surgery, resulting in an 11-year latency from symptom onset to diagnosis, underscoring the need for less invasive, less expensive approaches. Since the uterine lining (endometrium) in women with endometriosis has altered molecular profiles, we tested whether molecular classification of this tissue can distinguish and stage disease. We developed classifiers using genomic data from n=148 archived endometrial samples from women with endometriosis or without endometriosis (normal controls or with other common uterine/pelvic pathologies) across the menstrual cycle and evaluated their performance on independent sample sets. Classifiers were trained separately on samples in specific hormonal milieu, using margin tree classification, and accuracies were scored on independent validation samples. Classification of samples from women with endometriosis or no endometriosis involved two binary decisions each based on expression of specific genes. These first distinguished presence or absence of uterine/pelvic pathology and then no endometriosis from endometriosis, with the latter further classified according to severity (minimal/mild or moderate/severe). Best performing classifiers identified endometriosis with 90-100% accuracy, were cycle phase-specific or independent, and utilized relatively few genes to determine disease and severity. Differential gene expression and pathway analyses revealed immune activation, altered steroid and thyroid hormone signaling/metabolism and growth factor signaling in endometrium of women with endometriosis. Similar findings were observed with other disorders versus controls. Thus, classifier analysis of genomic data from endometrium can detect and stage pelvic endometriosis with high accuracy, dependent or independent of hormonal milieu. We propose that limited classifier candidate-genes are of high value in developing diagnostics and identifying therapeutic targets. Discovery of endometrial molecular differences in the presence of endometriosis and other uterine/pelvic pathologies raises the broader biological question of their impact on the steroid hormone response and normal functions of this tissue.
Molecular classification of endometriosis and disease stage using high-dimensional genomic data.
Specimen part
View SamplesAlthough anemia is common in Shwachman-Diamond syndrome (SDS), the underlying mechanism remains unclear. We asked whether SBDS, which is mutated in most SDS patients, is critical for erythroid development. We found that SBDS expression is high early during erythroid differentiation. Inhibition of SBDS in CD34+ hematopoietic stem cells and early progenitors (HSC/Ps) and K562 cells led to slow cell expansion during erythroid differentiation. Induction of erythroid differentiation resulted in markedly accelerated apoptosis in the knockdown cells; however, proliferation was only mildly reduced. The percentage of cells entering differentiation was not reduced.
The ribosome-related protein, SBDS, is critical for normal erythropoiesis.
Specimen part, Disease, Disease stage
View SamplesEpidemiological studies indicate that progestin-containing contraceptives may increase susceptibility to HIV and other infections; however, underlying mechanisms involving the upper female reproductive tract are undefined. To determine the effects of depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) on gene expression and physiology of the human endometrial and cervical transformation zone (TZ), microarray analyses were performed on whole tissue biopsies. In endometrium, activated pathways included leukocyte chemotaxis, attachment, and inflammation in DMPA (z>2.5) and LNG-IUS (z>3.5) users, and regulation of pattern recognition receptors and other immune mediators. In cervical TZ, progestin treatment altered expression of tissue remodeling and viability genes, but not those of immune functions. Together, these results indicate that progestins influence expression of immune-related genes in endometrium that would be expected to result in the local recruitment of HIV target cells, and thus may increase HIV susceptibility. It is important to consider the upper reproductive tract in the assessment of effects of contraceptives that may influence susceptibility to pathogens, such as HIV.
Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix.
Specimen part
View SamplesIntravaginal HIV microbicides could provide women with a self-controlled means for HIV prevention, but results from clinical trials have been largely disappointing. We postulated that unrecognized effects of intravaginal gels on the upper female reproductive tract (FRT) might contribute to the lower-than-expected efficacy of HIV microbicides. In this observational crossover study, 28 healthy female volunteers used no product (control cycle) or used a nightly application of intravaginal nonoxynol-9 gel [N9] as a 'failed' microbicide or the universal placebo gel [UPG] as a 'safe' gel, from the end of menses to the mid-luteal phase (intervention cycles). They then underwent sample collection for measurements of T-cell phenotypes, transcriptional profiling, and protein levels from 3 anatomic sites above the vagina: the cervical transformation zone, the endocervix and the endometrium. We used hierarchical statistical models to estimate mean (95% CI) intervention:control fold-changes in relevant phenotype levels. Exposure to N9 and UPG generated a common 'harm signature' that included transcriptional up-regulation of inflammatory genes CCL20 and IL8 in the cervix, decreased protein concentrations of secretory leukocyte protease inhibitor and increased percentages of terminally differentiated CD4+ effector T-cells in the endocervix, and transcriptional up-regulation of inflammatory mediators KIR3DS1, glycodelin-A, and osteopontin in the endometrium. These results underscore the need to consider the effects of microbicide agents and gel excipients on the upper FRT in studies of vaginal microbicides. Given the pro-inflammatory effects of UPG on the upper FRT, it may not be a suitable placebo for microbicide trials.
Unexpected Inflammatory Effects of Intravaginal Gels (Universal Placebo Gel and Nonoxynol-9) on the Upper Female Reproductive Tract: A Randomized Crossover Study.
No sample metadata fields
View SamplesContext: Endometrium in polycystic ovary syndrome (PCOS) presents altered gene expression indicating progesterone resistance and predisposing to reduced endometrial receptivity and endometrial cancer. Objective: We hypothesized that an altered endocrine/metabolic environment in PCOS may result in an endometrial disease phenotype affecting the gene expression of different endometrial cell populations, including stem cells and their differentiated progeny. Design and setting: A prospective study conducted at an academic medical center. Patients and Main Outcome Measures: Proliferative phase endometrium was obtained from 6 overweight/obese PCOS (NIH criteria) and 6 overweight/obese controls. Microarray analysis was performed on fluorescence-activated cell sorting (FACS)-isolated endometrial epithelial cells (eEP), endothelial cells (eEN), stromal fibroblasts (eSF) and mesenchymal stem cells (eMSC). Gene expression data were validated using microfluidic Q-RT-PCR and immunohistochemistry (IHC). Results: The comparison between eEPPCOS and eEPCtrl showed dysregulation of inflammatory genes and genes with oncogenic potential (CCL2, IL-6, ORM1, TNAIFP6, SFRP4, SPARC). eSFPCOS and eSFCtrl showed upregulation of inflammatory genes (C4A/B, CCL2, ICAM1, TNFAIP3). Similarly, in eMSCPCOS vs. eMSCCtrl the most upregulated genes were related to inflammation and cancer (IL-8, ICAM1, SPRR3, LCN2). IHC scoring showed increased expression of CCL2 in eEPPCOS and eSFPCOS compared to eEPCtrl and eSFCtrl and IL-6 in eEPPCOS compared to eEPCtrl. Conclusions: Isolated endometrial cell populations in women with PCOS showed altered gene expression revealing inflammation and pro-oncogenic changes, independent of BMI, especially in eEPPCOS and eMSCPCOS, compared to controls. The study reveals an endometrial disease phenotype in women with PCOS with potential negative effects on endometrial function and long-term health.
Mesenchymal stem/progenitors and other endometrial cell types from women with polycystic ovary syndrome (PCOS) display inflammatory and oncogenic potential.
Sex, Specimen part
View SamplesMetastatic relapse is the major cause of death in neuroblastoma (NB), yet there are no therapies to specifically target metastases. To understand the molecular mechanisms mediating NB metastasis, we developed a mouse model using intracardiac injection and in vivo selection to isolate metastatic subpopulations that exhibited a higher propensity for bone and central nervous system metastases. Gene expression profiling revealed two distinct subtypes, primary and metastatic, with differential regulation of 412 genes and multiple pathways including CADM1, SPHK1, and YAP/TAZ whose expression independently predicted survival. Loss- and gain-of-function experiments with these genes demonstrated a rescue of metastatic phenotypes in multiple NB cell lines in vitro or in vivo. Treatment with the compounds SKI II and Verteporfin that target SPHK1 and YAP/TAZ, respectively, inhibited NB metastasis in vivo. In addition, using gene expression profiling from the metastatic subpopulations, a gene signature (MET-75) was identified that predicts NB survival of patients with metastatic disease. This model therefore identifies genes regulating metastasis and candidate therapeutics for metastatic NB
A Metastatic Mouse Model Identifies Genes That Regulate Neuroblastoma Metastasis.
Disease
View SamplesHuman oviduct serves as a conduit for sperm in the peri-ovulatory phase and to nurture and facilitate transport of the developing embryo en route to the uterus for subsequent nidation during the luteal phase of the cycle. Interactions between the embryo and oviductal epithelial surface proteins and secreted products during the four day embryo transit are largely undefined. Herein, we have investigated gene expression in human oviduct in the early luteal vs. follicular phase to identify candidate genes and biomolecular processes that may participate in maturation and transport of the embryo as it traverses this tissue. Oviductal RNA was isolated, processed, and hybridized to oligonucleotide arrays. Resulting data were analyzed by bioinformatic approaches and revealed that 650 genes were significantly downregulated and 683 genes were significantly upregulated in the luteal vs. follicular phase. Real-time RT-PCR, immunoblot analysis, and immunohistochemistry confirmed select gene expression and cellular protein localization. The data demonstrate downregulation of genes involved in macrophage recruitment, immunomodulation, and matrix-degeneration and upregulation of ion transport and secretions as well as anti-angiogenic and early pregnancy recognition genes in luteal vs. follicular phase oviduct. Together, these data suggest a unique hormonally regulated environment during embryo development, maturation and transport through human oviduct.
The human oviduct transcriptome reveals an anti-inflammatory, anti-angiogenic, secretory and matrix-stable environment during embryo transit.
Specimen part
View Samples