Purpose: The cholinergic anti-inflammatory pathway (CAP) links the nervous and immune systems and modulates innate and adaptive immunity. The goals of this study are to identify the new downstream signaling of a7nAChR in macrophages. Methods: Peritoneal macrophages isolated from a7nAChR+/+ and a7nAChR-/- mice were treated with nicotine (10 µM) and/or LPS (100 ng/ml), then RNA-seq was performed. Results: Genes were selected that had more than 4-fold relative gene expression in nicotine-treated cells compared to the control group (vehicle-treated). The same calculation was applied to nicotine+LPS-treated cells and LPS-treated cells and 264 genes were identified as genes commonly induced by nicotine based on these two comparisons. Then relative gene expression was compared between a7nAChR+/+- and a7nAChR-/- -derived cells. 18 genes were finally selected whose expressions are suppressed (<1/2) in a7nAChR-/- -derived peritoneal macrophages. Conclusions: Our study represents the first detailed analysis focused on the new downstream signaling of a7nAChR in macrophages, generated by RNA-seq technology. We newly revealed the important anti-inflammatory role of Hes1 in the CAP using some functional experiments. Overall design: Peritoneal macrophage's mRNA profiles of wild type (WT) and a7nAChR-/- mice treated with Nicotine and/or LPS were generated by deep sequencing.
Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney.
Specimen part, Cell line, Treatment, Subject
View SamplesWe created a rat sugar cataract model and examined the effects of various inhibitors on lens clouding. Lenses were removed from 6-week-old SD rats and cultured in M199 medium containing 30 mM galactose.
Histone acetyltransferase and Polo-like kinase 3 inhibitors prevent rat galactose-induced cataract.
Age, Specimen part
View SamplesIn order to clarify the downstream target genes of SPAG4, we performed knockdown of SPAG4 using siRNA both under normoxia and hypoxia.
Sperm-associated antigen 4, a novel hypoxia-inducible factor 1 target, regulates cytokinesis, and its expression correlates with the prognosis of renal cell carcinoma.
Cell line
View SamplesProphase I of male meiosis involves dynamic chromosome segregation processes during early spermatogenesis, including synapsis, meiotic recombination, and cohesion. Genetic defects in genes participating in these processes consistently cause reproduction failure in mice. To identify candidate genes responsible for infertility in humans, we performed expression profiling of mouse spermatogenic cells undergoing meiotic prophase I.
Screening of genes involved in chromosome segregation during meiosis I: toward the identification of genes responsible for infertility in humans.
Sex, Specimen part
View SamplesProphase I of meiosis involves dynamic chromosome segregation processes including synapsis, meiotic recombination, and cohesion. Genetic defects in genes participating in these processes consistently cause reproduction failure in mice. To identify candidate genes responsible for infertility or recurrent pregnancy loss in humans, we performed expression profiling of male and female gonads of mice undergoing meiotic prophase I.
Screening of genes involved in chromosome segregation during meiosis I: in vitro gene transfer to mouse fetal oocytes.
Sex, Age, Specimen part
View SamplesIntratracheal transfer of isolated lung fibroblasts in bleomycin-induced lung fibrosis recapitulates the activation process of lung fibroblasts after epithelial injury. In order to investigate gene expression signatures of transferred fibroblasts, we purified transferred fibroblasts 2, 4, and 7 days after the transfer and performed transcriptome analysis. We also isolated Acta2 high and low cells by using Acta2-mKO1 reporter mice 4 days after the transfer. Overall design: Lung fibroblasts were isolated from untreated Col-GFP mice after tissue dissociation and negative selection for lineage markers. Isolated lung fibroblasts were intratracheally transferred into wild type mice, which received intratracheal bleomycin treatment 7 days before the transfer. Col-GFP+ cells were purified from the host lungs by FACS sorting on 2, 4, and 7 days after the transfer. Acta2 high and low cells were prepared by transferring lung fibroblasts from Acta2-mKO1 reporter mice. mRNA was isolated from sorted cells, and gene expression profiles were acquired by next generation sequencing.
Gli signaling pathway modulates fibroblast activation and facilitates scar formation in pulmonary fibrosis.
Cell line, Subject
View SamplesTo test TWEAK/Fn14 pathway and relative agents in chronic TNBS colitis
TWEAK/Fn14 pathway promotes a T helper 2-type chronic colitis with fibrosis in mice.
Specimen part
View SamplesDecreased bile secretion in rodents by either ligation of the common bile duct or induction of cirrhosis causes changes in the small intestine, including bacterial overgrowth and translocation across the mucosal barrier. Oral administration of bile acids inhibits these effects. The genes regulated by FXR in ileum suggested that it might contribute to the enteroprotective actions of bile acids. To test this hypothesis, mice were administered either GW4064 or vehicle for 2 days and then subjected to bile duct ligation (BDL) or sham operation. After 5 days, during which GW4064 or vehicle treatment was continued, the mice were killed and their intestines were analyzed for FXR target gene expression.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Sex, Treatment
View SamplesObstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. In this report we have examined the role of FXR in the ileum. We demonstrate that it plays a crucial role in preventing bacterial overgrowth and maintaining the integrity of the intestinal epithelium
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Sex, Compound
View SamplesA mouse AGM-derived cell line, AGM-s3, was shown to support the development of hematopoietic stem cells. To elucidate the molecular mechanisms regulating early hematopoiesis, we obtained subclones from AGM-s3, some of which were hematopoiesis supportive (s3-A9) and others which were non-supportive (s3-A7), and we analyzed the gene expression profiles by gene chip analysis.
Expression profile analysis of aorta-gonad-mesonephros region-derived stromal cells reveals genes that regulate hematopoiesis.
No sample metadata fields
View Samples