The androgen receptor (AR) is a mediator of both androgen-dependent and castration- resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.
A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.
Cell line
View SamplesBiallelic inactivating mutations of the transcription factor 1 gene (TCF1), encoding hepatocyte nuclear factor 1a (HNF1a), were identified in 50% of hepatocellular adenomas (HCA) phenotypically characterized by a striking steatosis. To understand the molecular basis of this aberrant lipid storage, we performed a microarray transcriptome analysis validated by quantitative RT-PCR, western-blotting and lipid profiling. In mutated HCA, we showed a repression of gluconeogenesis coordinated with an activation of glycolysis, citrate shuttle and fatty acid synthesis predicting elevated rates of lipogenesis. Moreover, the strong dowregulation of L-FABP suggests that impaired fatty acid trafficking may also contribute to the fatty phenotype. In addition, transcriptional profile analysis of the observed deregulated genes in non-HNF1a-mutated HCA as well as in non-tumor livers allowed us to define a specific signature of the HNF1a-mutated HCA. In theses tumors, lipid composition was dramatically modified according to the transcriptional deregulations identified in the fatty acid synthetic pathway. Surprisingly, lipogenesis activation did not operate through SREBP-1 and ChREBP that were repressed. We conclude that steatosis in HNF1a-mutated HCA results mainly from an aberrant promotion of lipogenesis that is linked to HNF1a inactivation and that is independent of both SREBP-1 and ChREBP activation. Finally, our findings have potential clinical implications since lipogenesis can be efficiently inhibited by targeted therapies.
HNF1alpha inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element-binding protein (ChREBP) activation.
Sex, Specimen part, Disease
View SamplesFocal nodular hyperplasias (FNHs) are benign liver lesions considered to be a hyperplastic response to increased blood flow in otherwise normal liver. In contrast, FNH-like nodules occur in cirrhotic liver but share similar histopathological features. To better understand the pathophysiology of FNH, we performed a transcriptomic analysis. Methods: Affymetrix and cDNA microarrays were used to compare gene expression in eight FNHs with that in tissue from six normal livers. Selected genes were validated with quantitative RT-PCR in 70 benign liver tumors including adenomas and cirrhotic and FNH-like lesions. Results: Among the deregulated genes in FNHs, 19 were physiologically zonated in the normal liver lobule. All six periveinous genes were up-regulated in FNH, whereas 13 genes normally expressed in the periportal area were down-regulated. Immunohistochemistry revealed that glutamine synthetase was markedly overexpressed, forming anastomosed areas usually centered on visible veins. -catenin mRNA was slightly but significantly overexpressed, as were several known -catenin target genes. Moreover, activated hypophosphorylated -catenin protein accumulated in FNH in the absence of activating mutations. These results suggest zonated activation of the -catenin pathway specifically in FNH, whereas the other benign hepatocellular tumors, including FNH-like lesions, demonstrated an entirely different pattern of -catenin expression. Conclusions: In FNH, increased expression of the -catenin pathway was restricted to enlarged periveinous areas, which may explain the slight polyclonal over-proliferation of hepatocytes at the origin of the lesion. FNH-like nodules may have a different pathogenetic origin.
The beta-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules.
Sex, Specimen part, Disease
View SamplesMetastasis is a complex process involving loss of adhesion, migration, invasion and proliferation of cancer cells. Cell adhesion molecules play a pivotal role in this phenomenon by regulating cell-cell and cell-matrix interactions. CD146 (MCAM) is associated with advanced tumor stage in melanoma, prostate and ovarian cancers.
CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines.
No sample metadata fields
View SamplesPrimary human cytomegalovirus (HCMV) infection usually goes unnoticed, causing mild or no symptoms in immunocompetent individuals. Some rare severe clinical cases have however been reported without investigation of host immune responses or viral virulence. In this present study, we investigate, for the first time, phenotypic and functional features together with gene expression profiles in immunocompetent adults experiencing a severe primary HCMV infection. Twenty PHIP were enrolled as well as 26 HCMV-seronegative and 39 HCMV-seropositive healthy controls. PHIP had a huge lymphocytosis marked by massive expansion of NK and T cell compartments. Interestingly, PHIP mounted efficient innate and adaptive immune responses with a deep HCMV imprint, revealed mainly by the expansion of NKG2C+ NK cells, CD16+ V2- T cells and conventional HCMV-specific CD8+ T cells. The main effector lymphocytes were activated and displayed an early immune phenotype that developed toward a more mature differentiated status. We suggest that both huge lymphocytosis and excessive lymphocyte activation could contribute to a massive cytokine production known to mediate tissue damage observed in PHIP. Taken together, these findings bring new insights into the comprehensive understanding of immune mechanisms involved during primary HCMV-infection in immunocompetent individuals.
Severe Symptomatic Primary Human Cytomegalovirus Infection despite Effective Innate and Adaptive Immune Responses.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identifying Nuclear Matrix-Attached DNA Across the Genome.
Specimen part, Cell line
View SamplesInflammatory hepatocellular adenomas (IHCA) are benign liver tumours defined by the presence of inflammatory infiltrates and by the elevated expression of inflammatory proteins in tumour hepatocytes1,2. Here we show a striking activation of the IL6 signalling pathway in this tumour type, and sequencing candidate genes pinpointed this response to somatic gain-of-function mutations in the IL6ST gene that encodes the signalling co-receptor gp130. Indeed, ~70% of IHCA harbour small in-frame deletions that target the binding site of gp130 for IL6, and expression of the most frequent gp130 mutant, Delta-STVY190, in hepatocellular cells activates STAT3 in absence of ligand. Further, analysis of hepatocellular carcinomas revealed rare gp130 alterations always accompanied by -catenin-activating mutations, suggesting a cooperative effect of these signalling pathways in the malignant conversion of hepatocytes. The recurrent gain-of-function gp130 mutations in these human hepatocellular adenomas explains their inflammatory phenotype, and suggest that similar alterations may occur in other inflammatory epithelial tumours with STAT3 activation.
Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours.
Sex, Specimen part, Disease
View SamplesExperimental approaches to define the relationship between gene expression and nuclear matrix attachment regions (MARs) have given contrasting and method-specific results. We have developed a next generation sequencing strategy to identify MARs across the human genome (MAR-Seq). The method is based on crosslinking chromatin to its nuclear matrix attachment sites to minimize changes during biochemical processing. We used this method to compare nuclear matrix organization in MCF-10A mammary epithelial-like cells and MDA-MB-231 breast cancer cells and evaluated the results in the context of global gene expression (array analysis) and positional enrichment of gene-regulatory histone modifications (ChIP-Seq). In the normal-like cells, nuclear matrixattached DNA was enriched in expressed genes, while in the breast cancer cells, it was enriched in non-expressed genes. In both cell lines, the chromatin modifications that mark transcriptional activation or repression were appropriately associated with gene expression. Using this new MAR-Seq approach, we provide the first genome-wide characterization of nuclear matrix attachment in mammalian cells and reveal that the nuclear matrixassociated genome is highly cell-context dependent.
Identifying Nuclear Matrix-Attached DNA Across the Genome.
Specimen part, Cell line
View SamplesIn multigravidae, a specific dNK cell population characterized by NKG2CBright expression is expanded, suggesting that this reflects a population of memory dNK generated during the first pregnancy. Purpose: To gain further insight into the transcriptome profile of the expanded memory NKG2CBright dNK population found only in multigravida decidua samples Overall design: Flow cytometry based dNK cell sorting (based on CD56 and NKG2C) was done in order to purify CD56PosCD3NegCD16NegNKG2CBright and CD56PosCD3NegCD16NegNKG2CNeg subsets.
Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies.
Specimen part, Subject
View SamplestPTEN-/- mice display a deletion of the PTEN tumor suppressor gene specifically in T cells (cross PTEN flox/flox x lck-Cre). They develop T cell lymphoma with a primary thymic tumor and invasion of most organ at late stage of the disease.
Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.
Specimen part, Disease, Disease stage
View Samples