Even though T-cell receptor (TCR) stimulation together with co-stimulation is sufficient for the activation of both na誰ve and memory T cells, the memory cells are capable of producing lineage specific cytokines much more rapidly than the na誰ve cells. The mechanisms behind this rapid recall response of the memory cells are still not completely understood. Here, we performed epigenetic profiling of human resting na誰ve, central and effector memory T cells using ChIP-Seq and found that unlike the na誰ve cells, the regulatory elements of the cytokine genes in the memory T cells are marked by activating histone modifications even in the resting state. Therefore, the ability to induce expression of rapid recall genes upon activation is associated with the deposition of positive histone modifications during memory T cell differentiation. We propose a model of T cell memory, in which immunological memory state is encoded epigenetically, through poising and transcriptional memory. Overall design: Chromatin state of resting Human Naive, Central memory (TCM) and Effector Memory (TEM) T cells was analyzed by ChIP-Seq; Gene expression in resting and activated for 40 min, 150 min and 15hrs Naive, TCM and TEM cells was analyzed by RNA-Seq
Rapid Recall Ability of Memory T cells is Encoded in their Epigenome.
No sample metadata fields
View SamplesIL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expression resulting in an IL-7-dependent STAT1 and STAT5 activation. Consequently, the IL-7-induced transcriptome is altered with enrichment of IFN-stimulated genes (ISGs). Moreover, STAT1 overexpression was associated with reduced survival in CD4+ T cells undergoing lymphopenia-induced proliferation (LIP). We propose a model in which T cells undergoing LIP upregulate STAT1 protein, "switching on" an alternate IL-7-dependent program. This mechanism could be a physiological process to regulate the expansion and size of the CD4+ T cell pool. During HIV infection, the virus could exploit this pathway, leading to the homeostatic dysregulation of the T cell pools observed in these patients. Overall design: Sorted naive CD4 T and CD8 T cells from WT or STAT1 transgenic mice were stimulated for 90 minutes with IL-7 or IFNg. Additonally CD4 T cells from WT or STAT1 trangenic or IL7Ra449F transgenic mice were stimulated for overnight with IL-7 or IFNg or IFNa4. Up to four biological replicates tested for each condition.
IL-7-dependent STAT1 activation limits homeostatic CD4+ T cell expansion.
Cell line, Subject
View SamplesThe spontaneous pulmonary metastasis model of human uterine sarcoma was established using GFP-expressed MES-SA cells. Several sublines with different metastatic potentials were generated by in vivo passaging.
Establishment and characterization of a novel orthotopic mouse model for human uterine sarcoma with different metastatic potentials.
Sex, Specimen part
View SamplesIL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN) gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism.
Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment, Subject
View SamplesIn this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity. In this study, primary monocytes were differentiated into macrophages using M-CSF (M-Mac) or with a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in the macrophages, four of which were expressed higher in I-Mac (miRNAs 2.1, 8.1, 9.1 and 14.2) whilst three were detected in both M-Mac and I-Mac (miRNAs 9.3, 13.6 and 15.8). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment
View SamplesIn this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity. In this study, primary monocytes were differentiated into macrophages using M-CSF (M-Mac) or with a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in the macrophages, four of which were expressed higher in I-Mac (miRNAs 2.1, 8.1, 9.1 and 14.2) whilst three were detected in both M-Mac and I-Mac (miRNAs 9.3, 13.6 and 15.8). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs. Overall design: screening novel and known miRNAs which may have antiviral properties in 2 different treatments in 2 donors.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Subject
View SamplesThe susceptibility of macrophages to HIV-1 infection is modulated during monocyte differentiation. IL-27 is an anti-HIV cytokine that also modulates monocyte activation. Here, we present new evidence that IL-27 promotes monocyte differentiation into macrophages that are non-permissive for HIV-1 infection.
IL-27 inhibits HIV-1 infection in human macrophages by down-regulating host factor SPTBN1 during monocyte to macrophage differentiation.
Specimen part, Treatment
View SamplesTelogen (resting phase) hair follicles are more radioresistant than anagen (growth phase) ones. Irradiation of BALB/c mice in the anagen phase with -rays at 6 Gy induced hair follicle dystrophy, whereas irradiation in the telogen phase induced the arrest of hair follicle elongation without any dystrophy after post-irradiation depilation. In contrast, FGF18 was highly expressed in the telogen hair follicles to maintain the telogen phase and also the quiescence of hair follicle stem cells. Therefore, the inhibition of FGF receptor signaling at telogen induced the dystrophy after post-irradiation depilation. In addition, the administration of recombinant FGF18 suppressed cell proliferation in the hair follicles and enhanced the repair of radiation-induced DNA damage, so FGF18 protected the anagen hair follicles against radiation damage to enhance hair regeneration. Moreover, FGF18 reduced the expression of cyclin B1 and cdc2 in the skin and FGF18 signaling induced G2/M arrest in the keratinocyte cell line HaCaT, although no obvious change of the expression of DNA repair genes was detected by DNA microarray analysis. These findings suggest that FGF18 signaling for the hair cycle resting phase causes radioresistance in telogen hair follicles by arresting the proliferation of hair follicle cells.
FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling.
Sex, Specimen part
View SamplesAlthough thousands of long non-coding RNAs (lncRNAs) are localized in the nucleus, only a few dozen have been functionally characterized.
Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli.
Cell line
View Samples