Previous studies have suggested that CD133+ cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialised renal cells. However, whether renal engraftment of CD133+ cells is prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced nephropathy model in immunodeficient rats to assess the efficacy of CD133+ human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133+ cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Furthermore, using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133+ and CD133- cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133+ cells homing to the kidneys and generating specialised renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors.
Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue.
Specimen part, Disease stage
View SamplesThe clinical presentation, course and treatment of methamphetamine-associated psychosis (MAP) are similar to that observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of SCZ. However, several challenges currently exist in accurately diagnosing MAP at the molecular and neurocognitive level before the MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects diagnosed with MAP (N=10), METH-dependency without psychosis (MA) (N=10) and healthy controls (N=10). We used RNA-Sequencing gene expression to characterize molecular signatures associated to METH and MAP status compared to healthy control subjects. Overall design: Peripheral blood luekocytes gene expression was subject to transcriptional analysis for 10 MAP subjects, 10 subjects with METH-dependency without psychotic symptomics and 10 healthy controls.
Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report.
No sample metadata fields
View SamplesNascent RNA was metabolically labelled with 4SU in undifferentiated and ESC-derived neural progenitor cells (NPCs). 4SU incorporated RNA was isolated and deep-sequenced at day 0 (ESCs), 3, 5 and 7 of differentiation. NPC differentiation was monitored through expression of a GFP reporter insereted into the Sox1 locus (46C reporter ESC line; PMID: 12524553). The aim was to monitor changes in transcription as ESCs differentiate into NPCs and relate this to enhancer activity. Overall design: For each of the 4 differentiation time points, two independent biological replicates were prepared and sequenced. For each assayed time point, both merged and individual replicate 4SU-seq profiles were generated.
Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation.
Specimen part, Cell line, Subject
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the different inducible cell lines
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Specimen part
View SamplesNormal lung function relies on mature function of alveolar type II cels, which have numerous functions including to regulate ion and fluid flux, produce immune molecules, and synthesize and secrete surfactant to stabilize air spaces. Differentiation of type II cells from precursor epithelial cells is accelerated by exposure of cultured cells to glucocorticoid and cAMP.
Regulated gene expression in cultured type II cells of adult human lung.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the induction of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the inducible not-tagged cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesIn order to identify the effects of the knock-down of the gene of interest on the mouse ES transcriptome, we performed Affymetrix Gene-Chip hybridization experiments for the knock-down cell line.
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.
Cell line
View SamplesWT J1 and 3B3L cells (in which Dnmt3B and Dnm3L are constitutively expressed from an exogenous construct) were cultured under both serum/LIF and 2i/LIF conditions. 3B3L cells do not show ground state-associated hypomethylation phenotype. This experiment sought to analyse the gene expression changes between the two conditions. Overall design: Three biological replicates per condition J1 serum, J1 2i, 3B3-3l serum, 3B3-3l 2i.
DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency.
Specimen part, Cell line, Subject
View SamplesWe recently reported the discovery of a small molecule inhibitor, AI-10-49 which can specially inhibit the protein-protein interaction between RUNX1 tumor suppressor and CBFß-SMMHC oncogene. We also demonstrated that AI-10-49 can re-establish the RUNX1 transcriptional program in inv(16) cells and can extend the survival of inv(16) leukemic mice. To identify the transcriptional changes associated with AI-10-49, we performed RNA-seq analysis in ME-1 cells [human inv(16) leukemia cell line] treated with AI-10-49. Overall design: ME-1 cells were treated with DMSO/ AI-10-49 (1uM) for six hours, followed by RNA isolation. RNA libraries were sequenced using 90bp paired end reads on an Illumina HiSeqTM 2000.Three independent experiments were conducted for DMSO as well as AI-10-49 treatments.
CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia.
Specimen part, Cell line, Subject
View Samples