Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.
Sex, Age, Specimen part
View SamplesWe report the correlation between lung-derived neonatal MSCs and 2 clinical variables among preterm newborns: corrected gestational age (CGA) at collection and the severity of bronchopulmonary dysplasia (BPD) Overall design: To test the correlation between the transcriptional profiles of tracheal aspirate-derived mesenchymal stromal cells with late stage lung development and with bronchopulmonary dysplasia.
Lung-Resident Mesenchymal Stromal Cells Reveal Transcriptional Dynamics of Lung Development in Preterm Infants.
Specimen part, Subject
View SamplesTo examine the role of retinol binding protein 7 (RBP7) in PPAR gamma mediated regulation of target gene expression in the carotid artery, RNA-Seq was used to quantitate gene expression in carotid artery from both wild-type and RBP7 knockout mice after ligand-mediated activation of PPAR gamma with Rosiglitazone. Overall design: Carotid artery were removed from wild-type (WT) and RBP7 knockout (KO) mice and treated with either Rosliglitazone (ROSI, 10 uM) or vehicle DMSO (CONT) for 24 hrs.
Retinol-binding protein 7 is an endothelium-specific PPAR<b>γ</b> cofactor mediating an antioxidant response through adiponectin.
Sex, Specimen part, Treatment, Subject
View SamplesIt is unclear how nanosecond electrical pulses affect gene expression.
Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).
Specimen part, Cell line
View SamplesIt is unclear how nanosecond electrical pulses affect gene expression.
Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP).
Specimen part, Cell line
View SamplesT cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that PD-1 regulates T cell dysfunction during chronic LCMV infection in mice and PD-1 high cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, HCV and HBV. However, it is not known if PD-1 high cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function and gene expression profiles of PD-1 high versus PD-1 low CD8 T cells in the peripheral blood of healthy human adults as following: 1) The percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans and PD-1 was expressed by the memory CD8 T cells. 2) PD-1 high CD8 T cells in healthy humans did not significantly correlated with the PD-1 high exhausted gene signature of HIV specific human CD8 T cells or chronic LCMV specific CD8 T cells from mice. 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults. 4) PD-1 was expressed by the effector memory (TEM) compared to terminally differentiated effector (TEMRA) CD8 T cells. 5) Finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed.
Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults.
No sample metadata fields
View SamplesDiabetes and obesity are widespread diseases with signifciant socioeconomic implications. We used three different types of human adipose tissue (epigastric, visceral, and subcutaneous) in order to determine differences in global gene expression between these adipose depots in severely obese patients.
Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity.
Specimen part, Race
View Samples