This SuperSeries is composed of the SubSeries listed below.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part, Subject
View SamplesEpigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.
Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.
Sex, Age, Specimen part
View SamplesWe adopted a transcriptome-wide microarray analysis approach to determine the extent to which vascular gene expression is altered as a result of juvenile obesity and identify obesity-responsive mRNAs. We examined transcriptional profiles in the left anterior descending coronary artery (LAD), perivascular fat adjacent to the LAD, and descending thoracic aorta between obese (n=5) and lean (n=6) juvenile Ossabaw pigs (age=22 weeks). Obesity was experimentally induced by feeding the animals a high-fat/high fructose corn syrup/high-cholesterol diet for 16 weeks. We found that expression of 189 vascular cell genes in the LAD and expression of 165 genes in the thoracic aorta were altered with juvenile obesity (FDR10%) with an overlap of only 28 genes between both arteries. Notably, a number of genes found to be markedly up-regulated in the LAD of obese pigs are implicated in atherosclerosis, including ACP5, LYZ, CXCL14, APOE, PLA2G7, LGALS3, SPP1, ITGB2, CYBB, and P2RY12. Furthermore, pathway analysis revealed the induction of pro-inflammatory and pro-oxidant pathways with obesity primarily in the LAD. Gene expression in the LAD perivascular fat was minimally altered with juvenile obesity. Together, we provide new evidence that obesity produces artery-specific changes in pre-translational regulation with a clear up-regulation of pro-atherogenic genes in the LAD. Our data may offer potential viable drug targets and mechanistic insights regarding the molecular precursors involved in the origins of over-nutrition and obesity-associated vascular disease. In particular, our results suggest that the oxLDL-LOX-1-NFB signaling axis may be involved in the early initiation of a juvenile obesity-induced pro-atherogenic coronary artery phenotype.
Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine.
Specimen part
View SamplesWe report two clusters in the overall profiles of expression among the samples. At the parasitemia onset, there is a strong interferon response reflected in up-regulation of co-regulated transcripts, while unexpectedly we also see down-regulation of transcripts related to TLR signaling and innate immunity. RNASeq also suggested differential expression of reticulocytes and a subset of T cell function. No obvious difference in the transcriptomes of naïve and semi-immune volunteers was seen, however several hundred genes were up-regulated in naïve individuals. Overall design: RNA-seq analysis was performed for 12 individuals (6 each from Buenaventura and Cali) for two of the time points, namely the diagnosis day and baseline (pre-challenge day).
Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling.
No sample metadata fields
View SamplesMotivation: Sample source, procurement process, and other technical variations introduce batch effects into genomics data. Algorithms to remove these artifacts enhance differences between known biological covariates, but also carry potential concern of removing intra-group biological heterogeneity and thus any personalized genomic signatures. As a result, accurate identification of novel subtypes from batch corrected genomics data is challenging using standard algorithms designed to remove batch effects for class comparison analyses. Nor can batch effects be corrected reliably in future applications of genomics-based clinical tests, in which the biological groups are by definition unknown a priori.
Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch correction.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesThe overall goal of our studies is to elucidate the cellular and molecular mechanism by which the transcription factor Casz1 functions in murine heart development. We established that Casz1 is expressed in myocardial progenitor cells beginning at E7.5 and in differentiated cardiomyocytes throughout development. We generated conditional Casz1 knockout mice to show that ablation of CASZ1 in Nkx2.5-positive cardiomyocytes leads to cardiac hypoplasia, ventricular septal defects and lethality by E13.5. To identify the pathways and networks by which Casz1 regulates cardiomyocyte development, we used RNA-Seq and identified genes involved in cell proliferation are upregulated in Casz1 mutants compared to wild-type littermates. We conclude that Casz1 is essential for cardiac development and has a pivotal role in regulating part of the cardiac transcriptional program. Overall design: 3 biological replicates of the two genotypes (Nkx2-5+/+,Casz1f/+ and Nkx2-5Cre/+,Casz1f/f) were used for RNA-seq to determine genes that are differentially expressed in the murine heart when Casz1 is mutated. Nkx2-5+/+,Casz1f/+ were used as wild-type controls for comparison.
Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development.
No sample metadata fields
View SamplesBleaching gravid C. elegans followed by a short period of starvation of the L1 larvae is a routine method performed by worm researchers for generating synchronous populations for experiments. During the process of investigating dietary effects on gene regulation in L1 stage worms by single-worm RNA-Seq, we found that the density of resuspended L1 larvae affects expression of many mRNAs. Specifically, a number of genes related to metabolism and signalling are highly expressed in worms arrested at low density, but are repressed at higher arrest densities. We generated a GFP reporter strain based on one of the most density-dependent genes in our dataset – lips-15 – and confirmed that this reporter was expressed specifically in worms arrested at relatively low density. Finally, we show that conditioned media from high density L1 cultures was able to downregulate lips-15 even in L1 animals arrested at low density, and experiments using daf-22 mutant animals demonstrated that this effect is not mediated by the ascaroside family of signalling pheromones. Together, our data implicate a soluble signalling molecule in density sensing by L1 stage C. elegans, and provide guidance for design of experiments focused on early developmental gene regulation. Overall design: L1 Larvae arrested in M9 media at different densities were isolated for single L1 RNA-sequencing
Effects of Larval Density on Gene Regulation in <i>Caenorhabditis elegans</i> During Routine L1 Synchronization.
Cell line, Subject
View SamplesHere we report a large, training*testing, multi-site, blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) could be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early-stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas.
Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study.
Sex, Age, Specimen part, Disease, Disease stage, Race
View SamplesAbout 40% IBD patients treated with anti-TNF antibodies do not respond to therapy. Baseline biomarkers of response are therefore of interest. By combining computational deconvolution of gene expression and meta-analysis approaches we identified cellular biomarkers in tissue (validated in 2 cohorts by IHC of biopsies), and investigated associated gene biomarkers in blood. This dataset provides data from the validation cohort III (blood).
Cell-centred meta-analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD.
Disease, Disease stage, Treatment, Subject, Time
View SamplesStudies of gene expression profiles using the whole genome wide microarray analysis in SUM149PT cells (ER-, p53mut) and SUM190PT cells (ER-, p53mut) when treated with 5 or 7.5 M CG-1521 alone and in combination with 10 nM 17-Estradiol. Comparisons between each treatment group provides evidence for the dysregulation of genes associated with the spindle assembly checkpoint.
Histone deacetylase inhibitors modulate miRNA and mRNA expression, block metaphase, and induce apoptosis in inflammatory breast cancer cells.
Cell line
View Samples