A high percentage of uveal melanoma patients develop metastatic tumors that predominately occur in the liver. To identify genes associated with metastasis in this pathology, we studied 63 molecular profiles derived from gene expression microarrays performed from enuceated primary tumors.
High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients.
Sex, Age, Specimen part
View SamplesContext dependent molecular cues shape the formation of the cerebral vascular network and the function of the blood-brain barrier (BBB). The Wnt/ß-catenin pathway is orchestrating CNS vascular development, but downstream mediators have not been characterized. Here we generated an endothelial cell-specific R26-Axin1 overexpression (AOE) mouse model to inhibit Wnt/ß-catenin signaling. In AOE mice we discovered that blockade of Wnt/ß-catenin pathway leads to premature regression and remodeling without compromising BBB integrity. Importantly, by comparing transcriptomes of endothelial cells from wildtype and AOE mice, we identified ADAMTSL2 as a novel Wnt/ß-catenin-induced, secreted factor, important for stabilizing the BBB during development. Zebrafish loss-of-function and gain-of-function models, further demonstrated that ADAMTSL2 is crucial for normal vascular development and could rescue vascular phenotypes in AOE zebrafish brains. In conclusion, the studies presented here reveal a hitherto unrecognized role of ADAMTSL2 as an endothelial cell-specific mediator of Wnt/ß-catenin signaling during CNS vascular development and BBB-formation. Overall design: Examination of expression changes in mouse brain endothelial cells when overexpressing Axin1
Disruption of the Extracellular Matrix Progressively Impairs Central Nervous System Vascular Maturation Downstream of β-Catenin Signaling.
No sample metadata fields
View SamplesBackground: MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA.
Cell line
View SamplesTriple negative breast cancer (TNBC) is histologically characterized by the absence of the hormone receptors estrogen and progesterone, in addition to having a negative immunostain for HER-2. The aggressiveness of this disease and lack of targeted therapeutic options for treatment is of high clinical importance. MicroRNAs are short 21- to 23 nucleotide endogenous non-coding RNAs that regulate gene expression by binding to mRNA transcripts, resulting in either decreased protein translation or mRNA degradation. Dysregulated expression of miRNAs is now a hallmark of many human cancers. In order to identify a miRNA/mRNA interaction that is biologically relevant to the triple negative breast cancer genotype/phenotype, we initially conducted a miRNA profiling experiment to detect differentially expressed miRNAs in cell line models representing the triple negative (MDA-MB-231), ER+ (MCF7), and HER-2 overexpressed (SK-BR-3) histotypes. We identified human miR-34a expression as being >3-fold down (from its median expression value across all cell lines) in MDA-MB-231 cells, and identified AXL as a putative mRNA target using multiple miRNA/target prediction algorithms. The miR-34a/AXL interaction was functionally characterized through ectopic overexpression experiments with a miR-34a mimic. In reporter assays, miR-34a binds to the putative target site within the AXL 3UTR to affect luciferase expression. We also observed degradation of AXL mRNA and decreased AXL protein levels, as well as cell signaling effects on AKT phosphorylation and phenotypic effects on cell migration. Finally, we present an inverse correlative trend in miR-34a and AXL expression for both cell line and patient tumor samples.
Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA.
Cell line
View SamplesThe discovery of the first histone demethylase in 2004 (LSD1/KDM1) opened new avenues for the understanding of how histone methylation impacts cellular functions. A great number of histone demethylases have been identified since, which are potentially linked to gene regulation as well as to stem cell self-renewal and differentiation. KDM6A/UTY and KDM6B/JMJD3 are both H3K27me3/2-specific histone demethylases, which are known to play a central role in regulation of posterior development, by regulating HOX gene expression. So far nothing is known about the role of histone lysine demethylases (KDMs) during early hematopoiesis. We are studying the role of KDM6A and KDM6B on self-renewal, global gene expression and on local and global chromatin states in embryonic stem cells (ESCs) and during differentiation. In order to completely abrogate KDM6 demethylase activity in ESCs we employed a specific inhibitor (GSK-J4, Kruidenier et al. 2012). Treatment of ESCs with GSK-J4 had no effect on viability and proliferation . However, ESC differentiation in the presence of GSK-J4 was completely abrogated. In conclusion we show that ESC differentiation is completely blockend in the absence of any H3K27 demethylase activity.
Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage.
Cell line, Treatment
View SamplesIdentify transcriptional factors responsible for cytokine and chemokine production by fibroblasts
Autocrine Loop Involving IL-6 Family Member LIF, LIF Receptor, and STAT4 Drives Sustained Fibroblast Production of Inflammatory Mediators.
Specimen part, Disease, Disease stage
View SamplesTGZ is an agonist of the nuclear receptor PPARgamma. This synthetic compound displays anticancer effects on breast cancer cells but some of them are PPARgamma independent. Delta-2-TGZ (delta-2-troglotazone) is a PPARgamma inactive TGZ derivative possessing a double bond adjoining the thiazolidinedione ring. This compound still displays anticancer efefcts. It is an interesting tool to study the PPARgamma-independent mechanisms.
Pro-apoptotic effect of Δ2-TGZ in "claudin-1-low" triple-negative breast cancer cells: involvement of claudin-1.
Cell line
View SamplesIntegration of multiple signals shapes cell adaptation to their microenvironment through synergistic and antagonistic interactions. The combinatorial complexity governing signal integration for multiple cellular output responses has not been resolved. For outputs measured in the conditions 0 (control), signals X, Y, X+Y, combinatorial analysis revealed 82 possible interaction profiles, which we biologically assimilated to 5 positive, and 5 negative interaction modes. To experimentally validate their use in living cells, we designed an original computational workflow, and applied it to transcriptomics data of innate immune cells integrating physiopathological signal combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions. Each integration mode was enriched in specific molecular pathways, suggesting a coupling between genes involved in particular functions, and the corresponding mode of integration. We propose that multimodality and functional coupling are general principles underlying the systems level integration of physiopathological and pharmacological stimuli by mammalian cells.
Combinatorial code governing cellular responses to complex stimuli.
Time
View SamplesMesenchymal stromal cells (MSC) are multipotent cells that potentially promote angiogenesis. Especially MSC derived from the amnionic membrane of human term placentas (hAMSC) are promising candidates for a therapeutic use in vascular diseases, as cells can be isolated using non-invasive methods and are immunologically tolerated in vivo. In this study, we wanted to evaluate the endothelial differentiation potential of hAMSC.
Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells.
Specimen part
View Samples