Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements. Herein, we show that co-expression of FLT3-N676K and KMT2A-MLLT3 in human CD34+ cord blood cells primarily cause acute myeloid leukemia (AML) and rarely acute lymphoblastic leukemia (ALL) in immunodeficient mice. By contrast, expression of KMT2A-MLLT3 alone cause ALL, double-positive leukemia (DPL, expressing both CD33 and CD19), or bilineal leukemia (BLL, comprised of distinct myeloid and lymphoid leukemia cells), and rarely AML. Further, AML could only be serially propagated with maintained immunophenotype in secondary recipients when cells co-expressed KMT2A-MLLT3 and FLT3-N676K. Consistent with the idea that activated signaling would allow myeloid cells to engraft and maintain their self-renewal capacity, in a secondary recipient, a de novo KRAS-G13D was identified in myeloid cells previously expressing only KMT2A-MLLT3. Gene expression profiling revealed that KMT2A-MLLT3 DPL had a highly similar gene expression profile to ALL, with both expressing key lymphoid transcription factors and ALL cell surface markers, in line with the DPL cells being ALL cells with aberrant expression of CD33. Taken together, our results highlight the need for constitutive active signaling mutations for driving myeloid leukemia in a human xenograft model of KMT2A-R acute leukemia. Overall design: mRNA sequencing of various immunophenotypic populations from KMT2A-MLLT3 xenograft leukemias with or without FLT3-N676K generated using Illumina NextSeq 500.
FLT3<sup>N676K</sup> drives acute myeloid leukemia in a xenograft model of KMT2A-MLLT3 leukemogenesis.
Specimen part, Subject
View SamplesLineage negativ Sca1+ Kit+ bone marrow cells (containing putative hematopoietic stem cells) subfractionation based on CD34 and FLT3 identifies three functionally destinc subpopulations (LSKCD34-FLT3-, LSKCD34+FLT3- & LSKCD34+FLT3+).
Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors.
No sample metadata fields
View SamplesActivating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3ITD, FLT3N676K, and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Subclonal FLT3N676K mutations also accelerate disease, possibly by providing stimulatory factors such as Mif. Acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 were identified in KMT2A-MLLT3 leukemia cells and favored clonal expansion. During clonal evolution, serial genetic changes at the KrasG12D locus was observed, consistent with a strong selective advantage of additional KrasG12D. KMT2A-MLLT3 leukemias with signaling mutations enforced Myc- and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlights the importance of activated signaling as a contributing driver in this disease. Overall design: mRNA sequencing of KMT2A-MLLT3 leukemias with or without activating mutations generated using Illumina NextSeq 500.
De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia.
Specimen part, Cell line, Subject
View SamplesAn immune-restricted lymphomyeloid-primed progenitor with the capacity to contribute to both myeloid and lymphoid lineages in the developing embryo emerges prior to definitive HSCs. Overall design: Examination of fetal sorted lymphoid primed progentors and adult progenitors The fastq files are not provided at this time due to further analyses.
Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells.
No sample metadata fields
View SamplesGene expression analysis of early thymic progenitors and thymus seeding progenitors
The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential.
Sex, Age, Specimen part, Disease
View SamplesHost responses to intracellular UPEC communities
Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled.
No sample metadata fields
View SamplesSpinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalization. To understand the molecular mechanism behind this phenomenon we examined the transcriptional response of the motor neurons after spinal cord injury.
Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity.
Sex
View SamplesThe contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes. In many organisms dosage compensation has thus evolved to equalize sex-linked gene expression in males and females1,2, in mammals achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. Another form of dosage compensation ensures that expression levels on the X chromosome and on autosomes are balanced3,4. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma5,6. Here we use a microarray approach to show that male day 18 chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4-1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci2. Intriguingly, without global dosage compensation, female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds. The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination.
Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes.
No sample metadata fields
View SamplesSpinal cord injury leads to impaired motor and sensory functions. After spinal cord injury there is a an initial phase of hypo-reflexia followed by a developing hyper-reflexia, often termed spasticity. Previous studies have suggested a relationship between the reappearence of plateau potentials in motor neurons and the development of spasticity after spinalizaion. To understand the moleclar mechanism behind this pheneomona we examined the transcriptional response of the motor neurons after spinal cord injury as it progress over time.
Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.
Sex, Specimen part
View SamplesDiurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and transcriptome has not been studied in detail. In this study, 24-h sinoidal temperature cycles, oscillating between 12 and 30C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose, and extracellular metabolites, as well as CO2-production rates showed regular, reproducible circadian rhytms. DTC also led to waves of transcriptional activation and repression, which involved one sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to primarily respond to changes in glucose concentration. Elimination of known glucose-responsive genes revealed overrepresentation of previously identified temperature-responsive genes as well as genes involved in cell cycle and de novo purine biosynthesis. Analyses of budding index and flow cytomery demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in the chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to almost completely acclimatize their transcriptome and physiology at the DTC temperature maximum, and to approach acclimation at the DTC temperature minimum.
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.
No sample metadata fields
View Samples