Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls.
Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.
Sex, Age, Disease
View SamplesBipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.
Sex, Age, Disease
View SamplesBipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Orbitofrontal cortex tissue from a cohort of 30 subjects was investigated and the final analysis included 10 bipolar and 11 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes.
Sex, Age, Disease
View SamplesmiR-155 has recently emerged as an important promoter of antitumor immunity through its functions in T lymphocytes. However, the impact of T cell expressed miR-155 on immune cell dynamics in solid tumors remains unclear. In the present study, we used single-cell RNA-sequencing to define the CD45+ immune cell populations within B16F10 murine melanoma tumors growing in either wild-type (WT) or miR-155 T cell conditional knockout (TCKO) mice at different timepoints. miR-155 was required for optimal T cell activation and reinforced the T cell response at the expense of infiltrating myeloid cells. Further, myeloid cells from tumors growing in TCKO mice were defined by an increase in wound healing genes and a decreased IFNg response gene signature. Finally, we found that miR-155 expression predicted a favorable outcome in human melanoma patients and was associated with a strong immune signature. Moreover, gene expression and histological analysis of the Cancer Genome Atlas (TCGA) data revealed that miR-155 expression also correlates with an immune-enriched subtype in 29 other human solid tumor types. Together, our study provides an unprecedented analysis of the cell types and gene expression signatures by immune cells within experimental melanoma tumors and elucidates miR-155's role in coordinating this dynamic response. Overall design: B16F10 murine melanoma cells expressing ovalbumin model antigen were injected subcutaneously (1e6) into wild-type (C57BL/6) and miR-155 T cell conditional knockout mice (n>4). 9 or 12 days after injection, tumors were pooled in each group, and DAPI(-)CD45(+) live tumor infiltrating immune cells were sorted via flow cytometry. Sorted immune cells were processed for single-cell RNA-sequencing via 10x platform.
MicroRNA-155 coordinates the immunological landscape within murine melanoma and correlates with immunity in human cancers.
Specimen part, Cell line, Subject, Time
View SamplesDifferential gene expression profile of CD4+ T cells from 10 months old Wt, miR-155-/-, miR-146a-/- and DKO mice spleens. Overall design: Wt, miR-155-/-, miR-146a-/- and DKO mice were aged 10 months, CD4+ T cells were sorted from mice spleens for analyses.
miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation.
No sample metadata fields
View SamplesDifferential gene expression profile of Tfh and non-Tfh cells from both Wt and miR-155-/- mice spleens. Overall design: Wt and miR-155-/- mice were immunized with OVA. 8 days post immunization, CD4+CXCR+PD1+ Tfh cells and CD4+CXCR5-PD1- non Tfh cells were sorted from mice spleens for analyses.
miR-155 promotes T follicular helper cell accumulation during chronic, low-grade inflammation.
No sample metadata fields
View SamplesTumor associated CD4+ and CD8+ T cells were sorted from B16f10 OVA expressing tumors in miR-155 flox, miR-155 flox CD4Cre+, and miR-155 flox CD4Cre+ mice treated with immune checkpoint blocking (ICB) antibodies by flow sorting on CD45+CD3+CD4+ cells and CD45+ CD3+CD8+ cells. RNA was collected from these cells to perform RNA sequencing of total RNA. Overall design: Each sample represents cells from 2 to 3 individual tumors grown on individual mice that were pooled together before sorting via flow cytometry
Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.
Cell line, Subject
View SamplesPlant damage promotes the interaction of lipoxygenases (LOX) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed jasmonates. As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA and a series of related 14- and 12-carbon metabolites, collectively termed death acids. 10-OPEA accumulation becomes wound-inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S-transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.
Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.
Specimen part
View SamplesThe miR-155-dependent differences in gene expression in the HSPC compartment of FLT3-ITD mice is unknown. In this experiment, we performed RNA sequencing on FLT3-ITD and FLT3-ITD miR-155-/- mouse LKS cells. Overall design: RNA sequencing was performed on RNA extracted from Lin-, cKit+, Sca1+ cells isolated via flow cytometry from FLT3-ITD and FLT3-ITD miR-155-/- mice. 3 samples were submitted for sequencing for each experimental group. Each sample contains RNA from 3 mice, in order to get enough RNA from this rare stem cell population.
miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response.
Specimen part, Subject
View SamplesWe report the effects of exposure to the endocrine disurptor (2-ethylhexyl) phthalate (DEHP) on transcriptome modification in the livers of in vivo Zebrafish. Our data indicate changes in fatty acid metabolism and insulin resistance, pathways associated with the development of Non-Alcoholic Fatty Liver Disease (NAFLD). Overall design: Examination of transcriptome changes in an in vivo model organism exposed to a common, environmental compound.
Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP).
No sample metadata fields
View Samples