We investigated the global gene expression changes in normal and Brg1-deleted mesoderm differentiation of mouse embryonic stem cells. Overall design: RNAseq analysis of poly-adenylated RNA levels for 3 conditions: Day2 of differentiation, Day4 THF (Control), and Day4 4OHT (Brg1-deleted). 2 replicates per condition.
Brg1 modulates enhancer activation in mesoderm lineage commitment.
Cell line, Subject, Time
View SamplesObesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation.
Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.
Sex, Age, Specimen part
View SamplesWe overexpressed the spliced form of transcription factor XBP1 in mature F442A adipocytes by adenoviral infection. Control virus expressed GFP alone.
The role of adipocyte XBP1 in metabolic regulation during lactation.
Specimen part, Cell line
View SamplesTo better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). SSEA4+ or Kit+ cells were loaded into 5-10 µm integrated fluidic circuits (IFCs) using Fluidigm C1 instrument. Single cells in IFCs were lysed and total RNA was harvested for polyadenylation selection, reverse transcription and PCR amplification. Library constructions were performed according to Fluidigm Library preparation with Nextera XT protocol and sequenced on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesTo better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). Total RNA were extracted from those populations, and standard RNA sequencing libraries were prepared for sequnecing on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesHuman adult spermatogenesis involves a balance of spermatogonial stem cell self renewal and differentiation, alongside complex germline-niche interactions. To better understand, we performed single cell RNA sequencing of ~7000 testis cells from three healthy men of peak reproductive age. Our analyses revealed multiple distinctive transcriptional 'states' of self-renewing and differentiating spermatogonia, the cellular stages of gametogenesis, five niche cells (Leydig, Myoid, Sertoli, Endothelial, macrophage) and insights into germline-niche communication. Spermatogenesis was reconstructed computationally, which identified sequential coding, noncoding, and repeat-element transcriptional signatures. A new, developmentally early and likely quiescent spermatogonial state is identified (GFRA1-/ETV5-/ID4+/UTF1+/FGFR3+). Notably, certain epigenetic features combined with nascent transcription analyses suggest considerable plasticity within certain spermatogonial populations/states. Key findings were validated via RNA and protein staining. Taken together, we provided the first “Cell Atlas” of the adult human testis, and provide multiple new insights into germ cell development and germ cell – niche interaction. Overall design: We isolated single testicular cell from two infant (13 months old). Two technical replicates were performed for each individual.
The adult human testis transcriptional cell atlas.
Sex, Age, Specimen part, Subject
View SamplesWe report here senescent changes in the structure and organization of the mucociliary pseudostratified epithelium of the mouse trachea and the main stem bronchi. We confirm previous reports of the graduate appearance of age-related, gland-like structures (ARGLS) in the submucosa, espeically in the intercartilage regions and carina. Immunohistochemistry shows these structures contain ciliated and secretory cells and Krt5+ basal cells, but not the myoepithelial cells or ciliated ducts typical of normal submucosal glands. Data suggests they arise de novo by budding from teh surface epithelium rather than by delayted growth of small or cryptic submucosal glands. In old mice the surface epithelium contains fewer cells per unit length than in young mice and the proportion of Krt5+, p63+ basal cells is reduced in both males and females. However, there appears to be no significant difference in the ability of basal stem cells isolated from individual young and old mice to form clonal tracheospheres in culture or in the ability of the pithelium to repair after damage by inhaled sulfur dioxide. Gene expression analysis by Affymetrix microarray and quantitative PCR, as well as immunohistochemistry and flow sorting studies, are consistent with low-grade chronic inflammation in the tracheas of old versus young mice. The significance of these changes for ARGL formation are not clear since several treatments that induce acute inflammation in young mice did not result in budding of the surface epithelium.
Age-related changes in the cellular composition and epithelial organization of the mouse trachea.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors.
Sex, Specimen part, Treatment
View SamplesThe conducting airway epithelium of the rodent and human lung is made up of about equal proportions of ciliated and secretory cells. In addition, in regions where the epithelium is pseudostratfied, ~30% of the epithelium consists of undifferentiated basal cells (BCs). Evidence suggests that these BCs are multipotent stem cells that can self renew over the long term and give rise to both ciliated and secretory lineages. The goal of this project is to identify cellular and molecular mechanisms by which the basal cells normally maintain the epithelium and repair it after injury.
BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors.
Specimen part, Treatment
View SamplesThe conducting airway epithelium of the rodent and human lung is underlaid by mesenchymal cells that include vasculature, smooth muscle, fibroblasts and cartilage. The goal of this project is to identify cellular and molecular changes in the mesenchyme after injury to the epithelium by exposure to SO2 and which may participate in repair of the epithelium
BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors.
Sex, Specimen part, Treatment
View Samples