It has been unclear whether ischemic stroke induces neurogenesis or neuronal DNA-rearrangements in the human neocortex. We show here that neither is the case, using immunohistochemistry, transcriptome-, genome- and ploidy-analyses, and determination of nuclear bomb test-derived 14C-concentration in neuronal DNA. A large proportion of cortical neurons display DNA-fragmentation and DNA-repair short time after stroke, whereas neurons at chronic stages after stroke show DNA-integrity, demonstrating the relevance of an intact genome for survival. Overall design: Analyze of potential fusion transcripts in 13 samples, seven cortical ischemic stroke tissue and six control cortex, by deep sequencing using Illumina HiSeq 2000
The age and genomic integrity of neurons after cortical stroke in humans.
No sample metadata fields
View SamplesTo dissect the molecular mechanisms of PEA-15-mediated paclitaxel sensitization in ovarian cancer cells, we performed cDNA microarray analysis using SKOV3.ip1-S116A cells (Ser116 of PEA-15 substituted with alanine) and SKOV3.ip1-S116D cells (Ser116 of PEA-15 substituted with aspartic acid). cDNA microarray data analysis showed that SCLIP (SCG10-like protein), also known as STMN3, was highly expressed in SKOV3.ip1-S116D cells and was involved in pPEA-15-mediated paclitaxel sensitization in ovarian cancer cells.
Bisphosphorylated PEA-15 sensitizes ovarian cancer cells to paclitaxel by impairing the microtubule-destabilizing effect of SCLIP.
Specimen part, Cell line
View SamplesSeveral studies have shown that bone mineral density (BMD), a clinically measurable predictor of osteoporotic fracture, is the sum of genetic and environmental influences. In addition, serum IGF-1 levels have been correlated to both BMD and fracture risk. We previously identified a Quantitative Trait Locus (QTL) for Bone Mineral Density (BMD) on mouse Chromosome (Chr) 6 that overlaps a QTL for serum IGF-1. The B6.C3H-6T (6T) congenic mouse is homozygous for C57BL/6J (B6) alleles across the genome except for a 30 cM region on Chr 6 that is homozygous for C3H/HeJ (C3H) alleles. This mouse was created to study biology behind both the BMD and the serum IGF-1 QTLs and to identify the gene(s) underlying these QTLs. Female 6T mice have lower BMD and lower serum IGF-1 levels at all ages measured. As the liver is the major source of serum IGF-1, we examined differential expression in the livers of fasted female B6 and 6T mice by microarray.
A chromosomal inversion within a quantitative trait locus has a major effect on adipogenesis and osteoblastogenesis.
No sample metadata fields
View SamplesThe behavior of breast cancers and their response to neoadjuvant systemic therapy depend on their phenotype which is to a large extent determined by gene expression programs within the cancer cell.
Gene expression, molecular class changes, and pathway analysis after neoadjuvant systemic therapy for breast cancer.
Specimen part, Disease, Disease stage, Treatment
View SamplesIn the growth plate, the reserve and perichondral zones have been hypothesized to have similar functions, but their exact functions are poorly understood. Our hypothesis was that significant differential gene expression exists between perichondral and reserve chondrocytes that may differentiate the respective functions of these two zones. Normal Sprague-Dawley rat growth plate chondrocytes from the perichondral zone (PC), reserve zone (RZ), proliferative zone (PZ), and hypertrophic zone (HZ) were isolated by laser microdissection and then subjected to microarray analysis. In order to most comprehensively capture the unique features of the two zones, we analyzed both the most highly expressed genes and those that were most significantly different from the proliferative zone (PZ) as a single comparator.
Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways.
No sample metadata fields
View SamplesWe FACS sorted Ras-transformed human mammary epithelial cells (HMLER cells) into GD2+ and GD2- as well as CD44high/CD24low and CD44low/Cd24highcells and comapred the four different population by array.
Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis.
Cell line
View SamplesWe identified tazarotene-induced gene 1 (TIG1) as a potential tumorigenic gene in IBC. To investigate the underlying mechanism by which TIG1 promotes tumor growth and invasiveness of IBC cells, we first sought to identify TIG1 functional partners by using DNA microarray analysis to compare gene expression profiles between SUM149 cells transfected with control siRNA and SUM149 cells transfected with siRNA targeting TIG1. We identified receptor tyrosine kinase Axl as a functional partner of TIG1.
TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase.
Cell line
View SamplesWe used RNA-seq to compare the gene expression profiles of adult mouse prostate luminal cells and luminal cells that have the androgen receptor (AR) gene deleted. Our analyses show that AR-null luminal cells have altered expression levels of genes involved in cell-matrix adhesion, cytoskeleton regulation, and MAPK and TGF-beta signaling pathways. These results are consistent with our finding that AR-null luminal cells have abnormal cell morphology and loss of cell polarity. Overall design: Lineage marked wild-type luminal cells and AR-deleted luminal cells were flow-sorted based on YFP fluorescence respectively, and their expression profiles were analyzed by RNA-seq.
Dissecting cell-type-specific roles of androgen receptor in prostate homeostasis and regeneration through lineage tracing.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View SamplesThe synthesis of fatty acids and cholesterol is regulated by three membrane-bound transcription factors: sterol regulatory element-binding proteins (SREBP)-1a, -1c, and -2. Their function in liver has been characterized in transgenic mice that overexpress each SREBP isoform and in mice that lack all three nuclear SREBPs because of gene knockout of SREBP cleavage-activating protein (SCAP) required for nuclear localization of SREBPs. Here, we use oligonucleotide arrays hybridized with RNA from livers of three lines of mice (transgenic for SREBP-1a, transgenic for SREBP-2, and knockout for SCAP) to identify genes that are likely to be direct targets of SREBPs in liver. Application of stringent combinatorial criteria to the transgenic/knockout approach allows identification of genes whose activities are likely controlled directly by the SREBPs.
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.
Sex, Specimen part
View Samples