We undertook an integrative technological approach to compare miRNA detection capability of three high-throughput commercial platforms. Overall design: We artificially introduced human precursor, 2’-O-methyl modified and mature spiked-in miRNAs in a controlled fashion into native human placenta total RNA.
Differences in microRNA detection levels are technology and sequence dependent.
Subject
View SamplesThis study uses spiked-in transcript in order to compares various bioinformatics approaches and tools to assemble, quantify abundance and detect differentially expressed transcripts using RNA-Seq data. Mouse total RNA seq was extracted from embryonic stem cells (ES) before (designated as day 0) and four days after the addition of retinoic acid. 48 spikes were made in vitro from plasmid constructs and added to the total RNA in different concentrations (each mix has a set of different spike concentrations, see paper''s method). We found that detection of differential expression at the gene level is acceptable, yet on the transcript-isofom level all tools tested were lacking accuracy and precision. Overall design: Mouse total RNA was extracted from embryonic stem cells (ES) before (designated as day 0) and four days after the addition of retinoic acid (RA) (designated as day 4). Mouse spike-ins consisting of 48 different mouse RNA transcripts were generated in vitro from plasmid constructs and added to the total RNA. 23 of the spike-ins originate from 10 different locus regions, so that each locus is represented by at least two different transcripts. The remaining 25 spike-ins represent different loci.
Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.
No sample metadata fields
View SamplesThis study uses spiked-in transcript in order to compare various bioinformatics approaches and tools to assemble, quantify abundance and detect differentially expressed transcripts using RNA-Seq data. Mouse total RNA seq was extracted from embryonic stem cells (ES) before (designated as day 0) and four days after the addition of retinoic acid. 48 spikes were made in vitro from plasmid constructs and added to the total RNA in different concentrations (each mix has a set of different spike concentrations, see paper's method). We found that detection of differential expression at the gene level is acceptable, yet on the transcript-isofom level all tools tested were lacking accuracy and precision.
Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.
Specimen part, Cell line, Treatment
View SamplesPolyamines are absolutely required for cell growth and proliferation. While polyamine depletion results in reversible cell cycle arrest, the actual mechanism of growth inhibition is still obscure.
Expression profiling and biochemical analysis suggest stress response as a potential mechanism inhibiting proliferation of polyamine-depleted cells.
Specimen part, Cell line
View SamplesPolyamines are absolutely required for cell growth and proliferation. While polyamine depletion results in reversible cell cycle arrest, the actual mechanism of growth inhibition is still obscure.
Expression profiling and biochemical analysis suggest stress response as a potential mechanism inhibiting proliferation of polyamine-depleted cells.
Cell line, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues.
Specimen part, Cell line
View SamplesDNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. We show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modifications and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical for understanding methylation dynamics in normal and cancer cells.
Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues.
Specimen part, Cell line
View SamplesRetrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate ~900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and ~4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified ~400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response
Signaling to transcription networks in the neuronal retrograde injury response.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Specimen part
View SamplesPluripotency can be induced in somatic cells by ectopic expression of defined transcription factors, however the identity of epigenetic regulators driving the progression of cellular reprogramming requires further investigation. Here we uncover a non-redundant role for the JmjC-domain-containing protein histone H3 methylated Lys 27 (H3K27) demethylase Utx, as a critical regulator for the induction, but not for the maintenance, of primed and nave pluripotency in mice and in humans. Utx depletion results in aberrant H3K27me3 repressive chromatin demethylation dynamics, which subsequently hampers the reactivation of pluripotency promoting genes during reprogramming. Remarkably, Utx deficient primordial germ cells (PGCs) display a cell autonomous aberrant epigenetic reprogramming in vivo during their embryonic maturation, resulting in the lack of functional contribution to the germ-line lineage.
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Specimen part
View Samples