Small RNA libraries from total RNA isolated from adult ovaries Overall design: Small RNA libraries were derived from Ovaries of the Founder strain and their offspring and their reciprocal offspring. RNA from 5 individual ovaries was pooled .
piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.
No sample metadata fields
View SamplesThe vascular endothelium forms a physical barrier between blood and the surrounding tissue. Its constant exposure to haemodynamic shear stress controls endothelial barrier function which is of major importance for vascular homeostasis. The role of long non-coding RNAs (lncRNAs) in this process remains elusive. Here we identify the shear stress-induced lncRNA LASSIE (linc00520) as a stabilizer of adherens junctions (AJs) in endothelial cells (ECs), that is indispensable for normal endothelial barrier function and shear stress sensing. Silencing of LASSIE in ECs resulted in impaired cell survival, loss of cell-cell contacts and failure to align in the direction of flow. RNA affinity purification followed by mass spectrometry identified several junction proteins associated with LASSIE, including the endothelial adhesion protein PECAM-1 and intermediate filament (IF) protein nestin. Proteomic analysis of VE-cadherin-associated proteins showed that LASSIE silencing reduces VE-cadherin interaction with nestin and microtubule (MT)-associated cytoskeletal proteins. We confirmed that LASSIE silencing results in a decreased connection between VE-Cadherin and the cytoskeleton, resulting in loss of barrier function and shear stress sensing. Together, this study identifies the shear stress-induced lncRNA LASSIE as a critical link between AJs and the IF cytoskeleton, which is indispensable for normal EC junction stabilization and shear stress sensing.
Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function.
Specimen part
View SamplesMyosin IIa-deficient follicular B cells have a hyperactivated phenotype. To identify what pathways are regulated by myosin IIa, we performed RNA-seq of coding RNA on flow cytometry sorted follicular B cells from CD23Cre+Myh9fl/fl and CD23Cre+Myh9wt/fl mice. Overall design: B220+AA4.1-CD23+CD21lo follicular B cells were sorted from 3 CD23Cre+Myh9fl/fl and 3 CD23Cre+Myh9wt/fl mice and mRNA was isolated and sequenced.
Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
Specimen part
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesAccumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.
No sample metadata fields
View SamplesLong non-coding RNAs show highly tissue and disease specific expression profiles. We analyzed prostate cancer and normal adjacent prostate samples to identify cancer-specific transcripts and found 334 candidates, of which 15 were validated by RT-PCR.
Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer.
No sample metadata fields
View SamplesTo identify a cohort of rhythmically expressed genes in the murine Distal Colon,microarrays were used to measure gene expression over a 24-hour light/dark cycle.The rhythmic transcripts were classified according to expression patterns, functions and association with physiological and pathophysiological processes of the colon including motility, colorectal cancer formation and inflammatory bowel disease.
Transcriptional profiling of mRNA expression in the mouse distal colon.
No sample metadata fields
View Samples