Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semi-allogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total PBMCs following delivery in healthy women were compared to those of non-pregnant control subjects. Interestingly, interferon stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14+ cells and could be stratified according to genetic variation at the interferon-3 gene (IFNL3, also named IL28B) single nucleotide polymorphism (SNP) rs12979860. Antiviral gene expression was sustained beyond six months following delivery in mothers with a CT or TT genotype but resembled baseline non-pregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together these data suggest that postpartum, the normalization of the physiological rheostat controlling interferon signaling is dependent on IFNL3 genotype.
Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype.
No sample metadata fields
View SamplesGonadotroph adenomas comprise 1540 % of all pituitary tumors, are usually non-functioning and are often large and invasive at presentation. Surgery is the first-choice treatment, but complete resection is not always achieved, leading to high recurrence rates. As gonadotroph adenomas poorly respond to conventional pharmacological therapies, novel treatment strategies are needed. Their identification has been hampered by our incomplete understanding of the molecular pathogenesis of these tumors. Recently, we demonstrated that MENX-affected rats develop gonadotroph adenomas closely resembling their human counterparts. To discover new genes/pathways involved in gonadotroph cells tumorigenesis, we performed transcriptome profiling of rat tumors versus normal pituitary. Adenomas showed overrepresentation of genes involved in cell cycle, development, cell differentiation/proliferation, and lipid metabolism. Bioinformatic analysis identified downstream targets of the transcription factor SF-1 as being up-regulated in rat (and human) adenomas. Meta-analyses demonstrated remarkable similarities between gonadotroph adenomas in rats and humans, and highlighted common dysregulated genes, several of which were not previously implicated in pituitary tumorigenesis. Two such genes, CYP11A1 and NUSAP1, were analyzed in 39 human gonadotroph adenomas by qRT-PCR and found to be up-regulated in 77 and 95 % of cases, respectively. Immunohistochemistry detected high P450scc (encoded by CYP11A1) and NuSAP expression in 18 human gonadotroph tumors. In vitro studies demonstrated for the first time that Cyp11a1 is a target of SF-1 in gonadotroph cells and promotes proliferation/survival of rat pituitary adenoma primary cells and cell lines. Our studies reveal clues about the molecular mechanisms driving rat and human gonadotroph adenomas development, and may help identify previously unexplored biomarkers for clinical use.
Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas.
Sex, Age, Specimen part
View SamplesMenisci play a vital role in load transmission, shock absorption and joint stability. The current dogma is that the menisci simply protects the cartilage and play no role in osteoarthritis (OA) unless they are injured. However, there is increasing evidence suggesting that OA menisci may not merely be bystanders in the disease process of OA. This study sought: 1) to determine the prevalence of meniscal degeneration in OA patients, 2) to examine gene expression in OA meniscal cells compared to normal control meniscal cells, and 3) to test the hypothesis that OA meniscal cells are different from normal meniscal cells.
Analysis of meniscal degeneration and meniscal gene expression.
Specimen part
View SamplesIllumina expression microarray analysis of TCam-2, 2102EP, NCCIT, JAR, MPAF, ARZ and FS1 cells 8 and 16 h after 10 nanomolar romidepsin application. DMSO treated cells were used as controls. These data are part of the article 'A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment' (Nettersheim et al., 2016).
A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.
Cell line
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View SamplesInhalation of toxic chemicals, including recent e-cigarettes, often cause life-threatening lung injury. Although exposure to polyhexamethylene guanidine (PHMG)-containing humidifier disinfectant (HD) has been identified as a cause of fatal lung injury, the mechanism underlying HD-associated lung injury (HDLI) is unknown. The present study evaluated global changes in gene expression in lung tissues from patients with PHMG-induced HDLI, and compared gene expression changes in PHMG-induced rat lung tissues. Significantly different expressions in lung tissues between patients with HDLI and unaffected controls were observed. Furthermore, several fibrosis-associated overlapping genes (such as MMP2 and COL1A2) shared between humans with HDLI and rats exposed to PHMG were identified. Interactome network analysis predicted different pathways between children and adults with HDLI: the TGFβ/SMAD signaling pathway was central in adults, whereas other pathways, including integrin signaling, were associated with HDLI in children. Further interactome network analysis revealed that Rap1 and CCKR signaling pathways were significantly enriched in HDLI compared with idiopathic pulmonary fibrosis as well as their recapitulation in the lung tissues of rats exposed to PHMG. Our results suggest that MMP2-mediated different mechanisms between children and adults may be associated with PHMG-induced HDLI development, and Rap1 and CCKR pathways appear to be crucial.
Integrative multi-omics approach for mechanism of humidifier disinfectant-associated lung injury.
Age, Specimen part
View SamplesWe used microarrays to detail the gene expression profile during WAT -beige transition by treatment of beta adrenergic receptor agonist .
Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat.
Specimen part
View SamplesDespite continual efforts to establish pre-operative prognostic model of gastric cancer by using clinical and pathological parameters, a staging system that reliably separates patients with early and advanced gastric cancer into homogeneous groups with respect to prognosis does not exist. With use of microarray and quantitative RT-PCR technologies, we exploited series of experiments in combination with complementary data analyses on tumor specimens from 161 gastric cancer patients. Various statistical analyses were applied to gene expression data to uncover subgroups of gastric cancer, to identify potential biomarkers associated with prognosis, and to construct molecular predictor of risk from identified prognostic biomarkers.Two subgroups of gastric cancer with strong association with prognosis were uncovered. The robustness of prognostic gene expression signature was validated in independent patient cohort with use of support vector machines prediction model. For easy translation of our finding to clinics, we develop scoring system based on expression of six genes that can predict the likelihood of recurrence after curative resection of tumors. In multivariate analysis, our novel risk score was an independent predictor of recurrence (P=0.004) in cohort of 96 patients, and its robustness was validated in two other independent cohorts. We identified novel prognostic subgroups of gastric cancer that are distinctive in gene expression patterns. Six-gene signature and risk score derived from them has been validated for predicting the likelihood of survival at diagnosis.
Gene expression signature-based prognostic risk score in gastric cancer.
No sample metadata fields
View SamplesUnder steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. We performed a global gene expression analysis to examine which genes are highly expressed by small intestinal eosinophils (CD11b+CD11c(int)MHCII-SiglecF+) compared with dendritic cells (CD11c+MHCII+).
Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.
Age, Specimen part
View SamplesBackground: Causative genes for autosomal dominantly inherited familial adenomatous polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC) have been well characterized. There is, however, another 10-15 % early onset colorectal cancer (CRC) whose genetic components are currently unknown. In this study, we used DNA chip technology to systematically search for genes differentially expressed in early onset CRC.
A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis.
Sex, Age, Specimen part
View Samples