Phloem-feeding pests cause extensive crop damage throughout the world yet little is understood about how plants perceive and defend themselves from these threats. The silverleaf whitefly (SLWF; Bemisia tabaci type B) is a good model for studying phloem-feeding insect-plant interactions as SLWF nymphs cause little wounding and have a long, continuous interaction with the plant. Using the Arabidopsis ATH1 GeneChip, the global responses to Silverleaf Whitefly 2nd instar feeding were examined.
Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids.
Age
View SamplesTo identify epigenetically silenced genes in multiple myeloma (MM) cell lines and to determine the effects of 5-aza-2-deoxycytidine and trichostatin A on gene expression. We treated 3 multiple myeloma cell lines (MM1, NCI-H929, U266) with 5-aza-2-deoxycytidine and/or trichostatin A.
Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells.
Specimen part, Disease, Cell line
View SamplesMegakaryoblastic Leukemia 1 and 2 (MKL1 and 2) are coactivators of the transcription factor Serum Response Factor (SRF). We recently showed that depletion of MKL1 and 2 abolished HCC xenograft growth, associated with oncogene-induced senescence. To identify suitable MKL target genes mediating these effects, we performed microarray analyses using HuH7 hepatocellular carcinoma cells stably expressing shRNA against MKL1/2 (HuH7 MKL1/2 KD). We therefore used a Affymetrix oligonucleotide array and filtered for genes whose expression in HuH7 MKL1/2 KD cells was reduced by a factor of at least 2.5 as compared to control HuH7 cells.
The novel MKL target gene myoferlin modulates expansion and senescence of hepatocellular carcinoma.
Specimen part
View SamplesAnalysis of five Notch signaling-dependent human T-ALL cell lines (ALLSIL, DND41, HPBALL, KOPTK1, TALL-1) treated with gamma-secretase inhibitor (GSI) to block Notch signaling. Samples include parental cells, cells rescued by retroviral transduction with ICN (a GSI-independent form of activated Notch1), and cells retrovirally transduced with c-Myc (an important downstream target of Notch1). Results allow segregation of bona fide Notch targets from other genes affected by gamma-secretase inhibition as well as from targets downstream of c-Myc.
High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling.
Cell line
View SamplesGene expression analysis has been established as a tool for the characterization of genotoxic mechanisms of chemical mutagens. This approach has been shown to differentiate between DNA reactive genotoxins and non-DNA reactive or indirectly-acting genotoxins. In this context, it has been suggested that expression analysis is capable of distinguishing compounds that cause DNA damage from those that interfere with mitotic spindle function. Formaldehyde (FA) is known to be a DNA-reactive substance which mainly induces chromosomal damage in cultured mammalian cells. However, there has been concern that FA might also act as an aneugen (i.e., induce aneuploidy) but recent cytogenetic studies did not support this assumption. To further characterize FA's genotoxic mode of action, we now used gene expression profiling as a molecular tool to differentiate between clastogenic and aneugenic activity. TK6 cells were exposed to FA for 4 and 24 h and changes in gene expression were analyzed using a whole-genome human microarray. Results were compared to the expression profiles of two DNA-damaging clastogens (methyl methanesulfonate [MMS] and ethyl methanesulfonate [EMS]) and two aneugens (colcemid [COL] and vincristine [VCR]). The gene expression profiles indicated that clastogens and aneugens induce discriminable gene expression patterns. The expression profile of FA showed more similarities to clastogens than to aneugens. Hierarchical clustering analysis as well as several class prediction algorithms revealed a much closer relationship of FA with clastogens than with aneugens. A pathway analysis of differentially regulated genes also demonstrated an overall better agreement of FA with clastogens than with aneugens. Altogether, the results of this study revealed great similarities in gene expression in response to FA and clastogens but did not support an aneugenic activity of FA.
Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells.
Cell line, Treatment
View SamplesUsing various exposure conditions, we studied the induction of DNA-protein crosslinks (DPX) by formaldehyde (FA) and their removal in primary human nasal epithelial cells (HNEC). DPX were indirectly measured by the alkaline comet assay as the reduction of gamma ray induced DNA migration. DPX are the most relevant primary DNA alterations induced by FA and the comet assay is a very sensitive method for the detection of FA-induced DPX. In parallel experiments, we investigated changes in gene expression by using a full genome human microarray. After a single treatment with FA (50 to 200 M), concentration and time-dependent changes in gene expression were seen under conditions that also induced genotoxicity. Repeated treatments with low FA concentrations (20 and 50 M) did not lead to a significant induction of DPX but repeated treatments with 50 M FA changed the expression of more than 100 genes. Interestingly, the expression of genes involved in the main pathway for FA detoxification and the repair of DPX were not specifically enhanced. A high degree of overlap was seen among the pattern of gene changes induced by FA in HNEC in comparison to recently published array studies for nasal epithelial cells from rats exposed to FA in vivo. Our results suggest that HNEC are a suited in vitro model for the characterization of FA-induced toxicity and the relationship between genotoxic and other cytotoxic effects.
Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro.
Specimen part, Treatment
View SamplesThe first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate to neuroepithelial cells for six days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)), and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (i) the concentration-dependence, (ii) the time-dependence, and (iii) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This ‘RoFA predictor gene set’ may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.
Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances.
Sex, Specimen part, Cell line, Treatment
View SamplesTLRs are considered important for innate immune responses that combat bacterial infections. Here, the role of TLRs in severe septic peritonitis using the colon ascendens stent peritonitis (CASP) model was examined. We demonstrate that mice deficient for MyD88 and TRIF had markedly reduced bacterial numbers both in peritoneal cavity and peripheral blood, indicating that bacterial clearance in this model is inhibited by TLR signals. Moreover, survival of Myd88-/-;TrifLps2/Lps2 mice was significantly improved. The lack of TLR signals prevented the excessive induction of inflammatory cytokines and of IL 10. Notably, the expression of IFN-gamma, which has an essential protective role in septic peritonitis, and of IFN-regulated genes including several p47 and p65 GTPases as well as IP 10 was independent of TLR signaling. These results provide evidence that, in severe septic peritonitis, TLR deficiency balances the innate immune response in a favorable manner by attenuating deleterious responses such as excessive cytokine release, while leaving intact protective IFN-gamma production.
Improved host defense against septic peritonitis in mice lacking MyD88 and TRIF is linked to a normal interferon response.
Specimen part, Treatment
View SamplesThe macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation
Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity.
No sample metadata fields
View SamplesThe macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation. Recently, an activating effect of rapamycin on the function of myeloid-derived suppressor cells (MDSCs), a subset of immune suppressive cells of myeloid origin was reported. However, the effect of rapamycin treatment on MDSCs induction and function in the management of graft-versus-host disease is largely unknown.
Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity.
No sample metadata fields
View Samples