This experiment analyzes the changes in expression of twelve days old Arabidopsis roots at ten hours post inoculation upon cyst nematode H. schachtii infection.
Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes.
Age, Specimen part
View SamplesThis experiment analyzes the changes in expression of ten days old Arabidopsis roots upon NemaWater treatment.
Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes.
Age, Specimen part
View SamplesPBMC from house dust mite (HDM) sensitized atopics were cultured in the presence or absence of HDM extract for 24 hours.
Distinguishing benign from pathologic TH2 immunity in atopic children.
No sample metadata fields
View SamplesAtaxin 1 (Atxn1) is a protein of unknown function associated with cerebellar neurodegeneration in spinocerebellar ataxia type 1 (SCA1). SCA1 is caused by an expanded polyglutamine within Atxn1 by gain-of-function mechanisms. Lack of Atxn1 in mice triggers motor deficits in the absence of neurodegeneration or apparent neuropathological abnormalities.We extracted RNA from cerebellum of 5 Atxn1-null mice and 5 WT. Cerebellar gene expression profiles at 15 weeks of age were generated usSCA1 ing Affymetrix MOE430A arrays. Identifying the molecular pathways regulated by Atxn1 can provide insights into the early molecular mechanisms underlying neuronal dysfunction.
Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1.
Age, Specimen part
View SamplesAnalysis of expression profiles of human pDC cell line (CAL1) compared to an immature T cell line (MOLT4)
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesAnalysis of expression profiles of pDCs from wild type and heterozygous E2-2 mice. Results show the control by E2-2 of the expression of pDC-enriched genes.
Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development.
No sample metadata fields
View SamplesPBMC from house dust mite (HDM) sensitized atopics with or without asthma (or nonallergic controls) were cultured in the presence or absence of HDM extract for 24 hours.
Differential gene network analysis for the identification of asthma-associated therapeutic targets in allergen-specific T-helper memory responses.
Specimen part, Disease stage, Subject
View SamplesEpstein Barr virus (EBV) nuclear antigen 3C (EBNA3C) is an essential transcription factor for initiating and maintaining human B lymphocyte transformation to lymphoblastoid cell lines (LCLs). To comprehensively identify EBNA3C regulated cell genes in LCLs, oligonucleotide arrays were used to compare RNA abundances in 3 different LCLs transformed by an EBV that conditionally expresses EBNA3C. Cell RNA levels were assessed in actively growing LCLs, under non-permissive or permissive conditions or under non-permissive conditions after transcomplementation with wild type EBNA3C. A two-way ANOVA model with covariates including the 3 different clone effects and the 3 EBNA3C expression levels, identified 550 EBNA3C regulated genes, with False Discovery Rate <0.01 and >1.5 fold change. A seeded Bayesian network analysis of the 80 most significantly EBNA3C regulated genes that changed >1.5 fold, positioned RAC1, LYN and TNF upstream of other EBNA3C regulated genes. Further, Gene Set Enrichment Assay (GSEA) identified EBNA3C regulated genes to be enriched for MAP kinase signaling, cytokine-cytokine receptor interactions, JAK-STAT signaling, and cell adhesion molecule effects, implicating these pathways in LCL growth or survival. Moreover, 106 EBNA3C regulated genes could be placed in protein interaction networks. Since CXCL12 and CXCR4 signaling are implicated in LCL growth and were EBNA3C up-regulated, up-regulation of CXCL12 was validated by qRT-PCR and effects on induced LCL migration were confirmed. EBNA3C regulated genes significantly overlapped with EBNA2 and EBNA3A regulated genes, consistent with a central role for RBP/CSL in these effects.
Epstein-Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines.
Specimen part
View SamplesTo define molecular markers of tyrosine kinase inhibitor-induced cardiotoxicity, we measured transcriptome changes in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with one of four tyrosine kinase inhibitors (Erlotinib, Lapatinib, Sorafenib, or Sunitinib) displaying a range of mild to severe cardiotoxicity or a vehicle-only control (DMSO). Gene expression changes were assessed at the cell population level using total RNA-seq, which measured levels of both mRNAs and non-coding RNAs. hiPSC-CMs used in this study were the Cor.4U cells purchased from Ncardia. Overall design: hiPSC-CMs were treated with each TKI (Erlotinib, Lapatinib, Sorafenib or Sunitinib) at three doses (1, 3 and 10 µM) for 24 hours and the intermediate dose (3 µM) for an additional three time points (6h, 72h and 168h). hiPSC-CMs were also treated with the DMSO vehicle-only control at four time points (6h, 24h, 72h and 168h). Each treatment condition had three biological replicates, collected from three independent experiments using three different lots of hiPSC-CMs. Total RNA was collected from all these samples.
Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.
Sex, Specimen part, Subject, Compound, Time
View SamplesBackground: A subset of infants are hyper-susceptible to severe/acute viral bronchiolitis (AVB), for reasons unknown. Purpose: To characterise the cellular/molecular mechanisms underlying infant AVB in circulating cells/local airways tissues. Methods: PBMC and nasal mucosal scrapings (NMS) were obtained from Infants (<18mths) and children (1.5-5yrs) during AVB and post-convalescence. Immune response patterns were profiled by multiplex analysis of plasma cytokines, flow cytometry, and transcriptomics (RNA-Seq). Molecular profiling of group-level data utilised a combination of upstream regulator and coexpression network analysis, followed by individual subject-level data analysis employing personalised N-of-1-pathways methodology. Results: Group-level analyses demonstrated that infant PBMC responses were dominated by monocyte-associated hyper-upregulated type I interferon signalling/pro-inflammatory pathways (drivers: TNF, IL6, TREM1, IL1B), versus a combination of inflammation (PTGER2, IL6) plus growth/repair/remodelling pathways (ERBB2, TGFB1, AREG, HGF) coupled with Th2 and NK-cell signalling in children. Age-related differences were not attributable to differential steroid usage or variations in underlying viral pathogens. Nasal mucosal responses were comparable qualitatively in infants/children, dominated by interferon types I-III, but the magnitude of upregulation was higher in infants (range 6-48-fold) than children (5-17-fold). N-of-1-pathways analysis confirmed differential upregulation of innate immunity in infants and NK cell networks in children, and additionally demonstrated covert AVB response sub-phenotypes that were independent of chronological age. Conclusions: Dysregulated expression of interferon-dependent pathways following respiratory viral infections is a defining immunophenotypic feature of AVB-susceptible infants and a subset of children. Susceptible subjects appear to represent a discrete subgroup who cluster based on (slow) kinetics of postnatal maturation of innate immune competence. Overall design: The study design consisted of PBMC from infants (<18months, n=15 pairs) and pre-school children (2-5yrs, n=16 pairs) sampled during severe acute viral bronchiolitis (acute visit = AV) and following recovery during convalescence (convalescent visit = CV). RNA-Seq profiles were generated by sequencing llumina HiSeq2500, 50bp single-end reads, v4 chemistry. Samples were sequenced across two lanes and collapsed prior analysis.
Personalized Transcriptomics Reveals Heterogeneous Immunophenotypes in Children with Viral Bronchiolitis.
Subject
View Samples