4 chorionic villus sampling specimens in pregnancies destined for preeclampsia and 8 matched controls were analyzed
Altered global gene expression in first trimester placentas of women destined to develop preeclampsia.
No sample metadata fields
View SamplesRNA-seq analysis of human 293 Tet-off cells depleted of PTBP1 and UPF1 alone and in tandem with specific siRNAs. Overall design: siRNA-based depletion of PTBP1, UPF1, and PTBP1/UPF1 together, with a validated non-silencing siRNA as a control.
Polypyrimidine tract binding protein 1 protects mRNAs from recognition by the nonsense-mediated mRNA decay pathway.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue.
Sex, Specimen part
View SamplesThe objective was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays in subcutaneous and omental adipose tissue (n=3 independent subjects; 6 arrays). Predictive bioinformatic algorithms were employed to identify those differentially expressed genes that code for secreted proteins and to identify common pathways between these proteins. All patients provided informed written consent before inclusion in the study which was approved by the North of Scotland Research Ethics Committee (NOSREC).
Using gene expression to predict differences in the secretome of human omental vs. subcutaneous adipose tissue.
Sex, Specimen part
View SamplesThe goal of the current study was to identify changes in gene expression in the stomach muscularis that may be contributing to altered gastric motility in gastroparesis and obesity. Overall design: Stomach muscularis biopsies were obtained from human subjects with low BMI and normal gastric motility (low BMI control, n=6), subjects with high BMI but normal gastric motility (high BMI control, n=6), subjects with low BMI and gastroparesis (low BMI gastroparesis, n=6) and from subjects with high BMI and gastroparesis (High BMI gastroparesis, n=4). RNA was isolated and subjected to whole transcriptome sequencing.
Transcriptome profiling reveals significant changes in the gastric muscularis externa with obesity that partially overlap those that occur with idiopathic gastroparesis.
Specimen part, Subject
View SamplesOxidoreductase enzymes are critical to redox regulation of intracellular proteins within human cells. We used microarrays to identify which oxidreducatse genes are expressed in unstimulated human umbilical vein endothelial cells.
Naturally occurring free thiols within beta 2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury.
Specimen part
View SamplesTargeting BET bromodomain proteins utilizing small molecules in an emerging anti-cancer strategy with clinical evaluation of at least six inhibitors now underway. While MYC downregulation was initially proposed as a key mechanistic property of BET inhibitors, recent evidence suggests that additional anti-tumor activities are important. Using the Eµ-Myc model of B-cell lymphoma we demonstrate that BET inhibition with JQ1 is a potent inducer of p53-independent apoptosis that occurs in the absence of effects on Myc gene expression. JQ1 skews the expression of pro-apoptotic (Bim) and anti-apoptotic (BCL-2/BCL-xL) BCL-2 family members to directly engage the mitochondrial apoptotic pathway. Consistent with this, Bim knockout or Bcl-2 overexpression inhibited apoptosis induction by JQ1. We identified lymphomas that were either intrinsically resistant to JQ1-mediated death or acquired resistance following in vivo exposure. Strikingly, in both instances BCL-2 was strongly upregulated and was concomitant with activation of RAS pathways. Eµ-Myc lymphomas engineered to express activated Nras upregulated BCL-2 and acquired a JQ1-resistance phenotype. These studies provide important information on mechanisms apoptosis induction and resistance to BET-inhibition, while providing further rationale for the translation of BET inhibitors in aggressive B-cell lymphomas. Overall design: RNA-Sequencing of JQ1 resistant and sensitive Eµ-Myc cell lines
BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members.
Cell line, Subject
View SamplesDendritic cells (DC) serve a key function in host defense, linking innate detection of microbes to the activation of pathogen-specific adaptive immune responses. Whether there is cell-intrinsic recognition of HIV-1 by host innate pattern-recognition receptors and subsequent coupling to antiviral T cell responses is not yet known. DC are largely resistant to infection with HIV-1, but facilitate infection of co-cultured T-helper cells through a process of trans-enhancement. We show here that, when DC resistance to infection is circumvented, HIV-1 induces DC maturation, an antiviral type I interferon response and activation of T cells. This innate response is dependent on the interaction of newly-synthesized HIV-1 capsid (CA) with cellular cyclophilin A (CypA) and the subsequent activation of the transcription factor IRF3. Because the peptidyl-prolyl isomerase CypA also interacts with CA to promote HIV-1 infectivity, our results suggest that CA conformation has evolved under opposing selective pressures for infectivity versus furtiveness. Thus, a cell intrinsic sensor for HIV-1 exists in DC and mediates an antiviral immune response, but it is not typically engaged due to absence of DC infection. The virulence of HIV-1 may be related to evasion of this response, whose manipulation may be necessary to generate an effective HIV-1 vaccine.
A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells.
Specimen part
View SamplesBET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We discovered that the maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and IFN-? induced CD274 expression across different human and mouse tumor cell lines and primary patient samples. Mechanistically, BETi decreased Brd4 occupancy at the Cd274 locus without any change in Myc occupancy, resulting in transcriptional pausing and rapid loss of Cd274 mRNA production. Finally, targeted inhibition of the PD1/PD-L1 axis by combining anti-PD1 antibodies and the BETi JQ1 caused synergistic responses in mice bearing Myc-driven lymphomas. Our data uncovers a novel interaction between BETi and the PD-1/PD-L1 immune-checkpoint and provides novel insight into the transcriptional regulation of CD274. Overall design: RNA Sequencing of Eµ-Myc lymphoma cell lines treated for 2 hours with JQ1, or DMSO vehicle.
BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1.
Cell line, Treatment, Subject
View SamplesPurpose: We applied RNA sequencing technology for high-throughput analysis of transcriptional changes within human MM cell lines JJN3 and U266 due to individual and combination drug treatment. Methods: JJN3 and U266 cells were treated with pan-HDACi panbobinostat, DNMTi 5-Azacytidine, panobinostat+5-Azacytidine or NMP for 4h or 24h in triplicate and transcriptional changes assessed by RNAseq using Illumina HiSeq platform. Specifically, JJN3 cells were treated with 10nM panobinostat, 2.5µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. U266 cells were treated with 10nM panobinostat, 10µM 5-Azacytidine, panobinostat+5-Azacytidine (at given doses), or 10mM NMP. Results: We report unique and overlapping transcriptional signatures that lead to the induction of apoptosis in human MM cell lines in a cell-specific manner due to individual or combination treatments. Conclusions: A detailed analysis of differential transcriptional events in human MM cell lines due to HDACi, DNMTi, HDACi+DNMTi and NMP appear to define the molecular events leading to apoptosis and drug mechanism of action. Overall design: We tested triplicate experiments at 4h and 24hr time points in JJN3 and U266 cell lines against vehicle control treated cells.
The drug vehicle and solvent N-methylpyrrolidone is an immunomodulator and antimyeloma compound.
No sample metadata fields
View Samples