Comparison of the transcriptional profiles of full-thickness murine skin harboring tissue resident memory T cells exposed to specific or control trigger Overall design: Expression profiling by high throughput sequencing
T cell memory. Skin-resident memory CD8⁺ T cells trigger a state of tissue-wide pathogen alert.
No sample metadata fields
View SamplesInattention, impulsivity and hyperactivity are the primary behaviors associated with Attention Deficit / Hyperactivity Disorder (ADHD). Previous studies proved that peripheral blood gene expression signature could mirror central nervous system disease.
Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in Tourette syndrome: a pilot study.
Sex, Age, Specimen part
View SamplesProper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the present study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and -biogenesis. Microarray analysis of C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p<0.01) and an induction of HSP60 protein (1.31-fold, p<0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% (p<0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.
MicroRNA-382 silencing induces a mitonuclear protein imbalance and activates the mitochondrial unfolded protein response in muscle cells.
Specimen part, Cell line
View SamplesIn this study, we analyzed the effects of chronic alcohol consumption on liver repair and regeneration after partial hepatectomy (PHx). Rats were fed a liquid diet containing 36% of total calories derived from ethanol for 5 weeks; corresponding pair-fed calorie-matched controls were fed diets in which ethanol calories were replaced either by carbohydrate or by fat. After 5 weeks, rats were subjected to 70% PHx and liver samples were collected at 1, 6 and 24h after the surgery. The excised liver samples at t=0 served as within-animal controls. We used Affymetrix Rat Gene 1.0 ST arrays to obtain global gene expression data from each liver sample (n=4 replicate rats, 72 arrays total).
Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers.
Sex, Disease, Subject, Time
View SamplesBackground: Cold acclimation and exercise training were previously shown to increase peripheral insulin sensitivity in human volunteers with type 2 diabetes. Although cold is a potent activator of brown adipose tissue, the increase in peripheral insulin sensitivity by cold is largely mediated by events occurring in skeletal muscle and at least partly involves GLUT4 translocation, as is also observed for exercise training. Results: To investigate if cold acclimation and exercise training overlap in the molecular adaptive response in skeletal muscle, we performed transcriptomics analysis on vastus lateralis muscle collected from human subjects before and after 10 days of cold acclimation, as well as before and after a 12-week exercise training intervention. Methods: Cold acclimation altered the expression of 756 genes (422 up, 334 down, P<0.01), while exercise training altered the expression of 665 genes (444 up, 221 down, P<0.01). Principal Component Analysis, Venn diagram, similarity analysis and Rank–rank Hypergeometric Overlap all indicated significant overlap between cold acclimation and exercise training in upregulated genes, but not in downregulated genes. Overlapping gene regulation was especially evident for genes and pathways associated with extracellular matrix remodeling. Interestingly, the genes most highly induced by cold acclimation were involved in contraction and in signal transduction between nerve and muscle cells, while no significant changes were observed in genes and pathways related to insulin signaling or glucose metabolism. Conclusions: Overall, our results indicate that cold acclimation and exercise training have overlapping effects on gene expression in human skeletal muscle, but strikingly these overlapping genes are designated to pathways related to cell remodeling rather than metabolic pathways.
Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers.
Sex, Disease, Subject, Time
View SamplesBackground: Cold acclimation and exercise training were previously shown to increase peripheral insulin sensitivity in human volunteers with type 2 diabetes. Although cold is a potent activator of brown adipose tissue, the increase in peripheral insulin sensitivity by cold is largely mediated by events occurring in skeletal muscle and at least partly involves GLUT4 translocation, as is also observed for exercise training. Results: To investigate if cold acclimation and exercise training overlap in the molecular adaptive response in skeletal muscle, we performed transcriptomics analysis on vastus lateralis muscle collected from human subjects before and after 10 days of cold acclimation, as well as before and after a 12-week exercise training intervention. Methods: Cold acclimation altered the expression of 756 genes (422 up, 334 down, P<0.01), while exercise training altered the expression of 665 genes (444 up, 221 down, P<0.01). Principal Component Analysis, Venn diagram, similarity analysis and Rank–rank Hypergeometric Overlap all indicated significant overlap between cold acclimation and exercise training in upregulated genes, but not in downregulated genes. Overlapping gene regulation was especially evident for genes and pathways associated with extracellular matrix remodeling. Interestingly, the genes most highly induced by cold acclimation were involved in contraction and in signal transduction between nerve and muscle cells, while no significant changes were observed in genes and pathways related to insulin signaling or glucose metabolism. Conclusions: Overall, our results indicate that cold acclimation and exercise training have overlapping effects on gene expression in human skeletal muscle, but strikingly these overlapping genes are designated to pathways related to cell remodeling rather than metabolic pathways.
Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers.
Sex, Disease, Subject, Time
View SamplesAnalysis of knockdown of SDHD with or without knockdown of CDKN1C or SLC22A18 at gene expression level.
Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in SDHD-linked paragangliomas: SLC22A18 and CDKN1C are candidate tumour modifiers.
Specimen part, Cell line
View SamplesBrown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of beige cells from murine white fat depots.
Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
Cell line
View SamplesRat small intestine precision cut slices were exposed for 6 hours to in vitro digested yellow (YOd) and white onion extracts (WOd) that was followed by transcriptomics analysis. The digestion was performed to mimic the digestion that in vivo takes place in the stomach and small intestine. The transcriptomics response of the rat small intestine precision cut slices was compared to that of human Caco-2 cells and the pig in-situ small intestinal segment perfusion. The microarray data for the human Caco-2 cells (GSE83893) and the pig in-situ small intestinal segment perfusion (GSE83908) have been submitted separately from the current data on rat intestine. The goal was to obtain more insight into to which extent mode of actions depend on the experimental model. A main outcome was that each of the three models pointed to the same mode of action: induction of oxidative stress and particularly the Keap1-Nrf2 pathway.
Effects of Digested Onion Extracts on Intestinal Gene Expression: An Interspecies Comparison Using Different Intestine Models.
Sex, Age, Specimen part
View Samples