Skeletal muscle is composed of both slow-twich oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function, and eventually whole-body physiology. In the present study, we find that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibers, associated with a small increase in the number of oxidative fibers. This shift in fiber composition results in muscles with slower myofiber contraction and relaxation, and also results in decreased whole-body oxygen consumption, decreased spontaneous activity, increased adiposity, and glucose intolerance. In order to identify genes regulated by Tbx15, we utilized C2C12 myoblasts with either a stable retroviral over-expression or stable lentiviral knockdown of Tbx15.
Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism.
Specimen part, Cell line, Treatment
View SamplesInterleukin (IL)-17 plays an important and protective role in host defence and has been demonstrated to orchestrate airway inflammation by cooperating with and inducing proinflammatory cytokines. Mircoarrays were used to identify immediate-early/ primary response IL-17A-dependent gene transcripts in primary human bronchial ASM cells from mild asthmatic and healthy individuals.
IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.
Sex, Age, Specimen part, Treatment, Subject, Time
View SamplesSkeletal muscle insulin resistance, decreased phosphatidylinositol 3-kinase (PI3K) activation and altered mitochondrial function are hallmarks of type 2 diabetes. We created mice with a muscle-specific knockout of p110a or p110ß, the two major catalytic subunits of PI3K. We find that mice with muscle-specific knockout of p110a, but not p110ß, display impaired muscle insulin signaling and reduced muscle size due to enhanced proteasomal and autophagic activity. Despite insulin resistance and muscle atrophy, M-p110aKO mice show decreased serum myostatin, increased mitochondrial mass, increased mitochondrial fusion visualized by intravital microscopy, and increased PGC1a expression, especially PCG1a2 and PCG1a3. This leads to enhanced mitochondrial oxidative capacity, striking increases in muscle NADH content, and higher muscle free radical release measured in vivo using pMitoTimer reporter. Thus, p110a is the dominant catalytic isoform of PI3K in muscle in control of insulin sensitivity and muscle mass, and has a unique role in mitochondrial homeostasis in skeletal muscle. Overall design: All studies were performed in male mice on C57BL/6J background. Muscle-specific p110alpha or p11beta knockout mice were generated by crossing mice carrying the Cre recombinase gene driven by the human alpha-skeletal actin (HSA) promoter (Jackson Laboratories Stock Number: 006149) with mice carrying either floxed p110alpha or p110beta alleles in which exon 1 of p110alpha or exon 2 of p110bet was flanked with loxP sites. Skeletal muscle from 2-3-month-old male mice was harvested and RNA was extracted using Trizol. Gene expression profiling was performed using NEBNext mRNA Sample Prep Master Mix kit (NEB) by BioPolymers Facility at Harvard Medical School. Reads were aligned to the mouse genome (GRCm38) using STAR aligner and counted with Subread featureCounts.
Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism.
Sex, Cell line, Treatment, Subject
View SamplesExercise training improves whole body glucose homeostasis through effects largely attributed to adaptations in skeletal muscle; however, training also affects other tissues including adipose tissue. To determine if exercise-induced adaptations to adipose tissue contribute to training-induced improvements in glucose homeostasis, subcutaneous white adipose tissue (scWAT) from trained or sedentary donor mice was transplanted into the visceral cavity of sedentary recipients. Remarkably, nine days post-transplantation, mice receiving trained scWAT had improved glucose tolerance and enhanced insulin sensitivity compared to mice transplanted with sedentary scWAT or sham-treated mice. Mice transplanted with trained scWAT had increased insulin-stimulated glucose uptake in tibialis anterior and soleus muscles and brown adipose tissue, suggesting that the transplanted scWAT exerted endocrine effects. Furthermore, the deleterious effects of high-fat feeding on glucose tolerance and insulin sensitivity were completely reversed if high-fat fed recipient mice were transplanted with trained scWAT. In additional experiments, voluntary exercise training by wheel running for only 11 days resulted in profound changes in scWAT including increased expression of 1550 genes involved in numerous cellular functions, including metabolism. Exercise training causes adaptations to scWAT that elicit metabolic improvements in other tissues, demonstrating a previously unrecognized role for adipose tissue in the beneficial effects of exercise on systemic glucose homeostasis.
A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.
No sample metadata fields
View SamplesFirst experiment: Cells were cultured in sulfur amino acid-free DMEM supplemented with 0.1 mM methionine + 0.1 mM cysteine (complete) or supplemented only with 0.1 mM methionine (cysteine-free). Cells were cultured in either medium for 42 h (Long + Cys; Long -Cys) or in cysteine-free medium for 36 h followed by 6 h in complete medium (Short +Cys)
HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway.
No sample metadata fields
View SamplesMouse ES cells were differentiated for 6 days. Undifferentiated cells (d0) were compared to cells harvested at 24 hour timepoints (d1-d6).
Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.
Age, Specimen part, Cell line, Time
View SamplesUndifferentiated cells of different passage numbers (p19 and p128) were compared to cells differentiated in hanging drops for 5 days (d5 embryoid bodies) or expanded on gelatin coated dishes for a further 9 days (d14 embryoid bodies).
Transcriptional profiling of mouse and human ES cells identifies SLAIN1, a novel stem cell gene.
Age, Specimen part, Cell line, Time
View SamplesThe yeast Ssn6-Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Ssn6-Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of SSN6 or TUP1, and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of SSN6 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at -1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Ssn6 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of SSN6 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Ssn6-Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.
Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.
No sample metadata fields
View SamplesHepG2/C3A cells cultured for 42 h in complete or leucine-devoid medium
HepG2/C3A cells respond to cysteine deprivation by induction of the amino acid deprivation/integrated stress response pathway.
No sample metadata fields
View Samples