Activation of the hypoxia inducible transcription factor HIF-alpha and the NF-kappaB pathway promotes inflammation mediated tumor progression.
The hypoxia-inducible transcription factor ZNF395 is controlled by IĸB kinase-signaling and activates genes involved in the innate immune response and cancer.
Cell line, Treatment
View SamplesWe used microarray analysis to investigate if keratinocytes excert an immuno-inflammatory response towards streptococcal M1 protein.
Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.
Specimen part, Cell line
View SamplesWater soluble carbohydrates (WSC, composed of mainly fructans, sucrose, glucose and fructose) deposited in wheat stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred SB (Seri/Babax) lines of Triticum aestivum differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, while the mRNA levels of enzyme families involved in sucrose hydrolysis (sucrose synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these sucrose hydrolytic enzymes in SB lines resulted in genotypic differences in these enzyme activities. Down-regulation of sucrose synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-glucose to cell wall synthesis (UDP-glucose 6-dehydrogenase, UDP-glucuronate decarboxylase and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat.
No sample metadata fields
View SamplesPreeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.
No sample metadata fields
View SamplesTumor growth and metastasis is controlled by paracrine signaling between cells of the tumor microenvironment and malignant cells. Cancer-associated fibroblasts (CAFs), are functionally important components of the tumor microenvironment. Although some steps involved in the cross-talk between these cells are known, there is still a lot that is not clear. Thus, the addition of, the consideration of microenvironment in the development of the disease, to the clinical and pathological procedures (currently admitted as the consistent value cancer treatments) could lay the foundations for the development of new treatment strategies to control the disease.
Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.
Specimen part
View SamplesPurpose: Evaluate gene expression profiles after inducing differentiation in cultured interstitial cystitis (IC) and control urothelial cells. Materials and Methods: Bladder biopsies were taken from IC patients and controls (women having surgery for stress incontinence). Primary cultures were grown in Keratinocyte Growth Medium with supplements. To induce differentiation, in some plates the medium was changed to DMEM-F12 with supplements. RNA was analyzed with Affymetrix chips. Three nonulcer IC patients were compared with three controls. Results: After inducing differentiation, 302 genes with a described function were altered at least 3-fold with p <0.01 in both IC and control cells. Functions of the162 upregulated genes included cell adhesion (e.g. claudins, occludin, cingulin); urothelial differentiation, retinoic acid pathway and keratinocyte differentiation (e.g. skin cornified envelope components). The 140 downregulated genes included genes associated with basal urothelium (e.g. p63, integrins ?4, ?5 and ?6, basonuclin 1 and extracellular matrix components), vimentin, metallothioneins and members of the Wnt and Notch pathways. Comparing IC vs. control cells after differentiation, only seven genes with a described function were altered at least 3-fold with p <0.01. PI3, SERPINB4, CYP2C8, EFEMP2 and SEPP1 were decreased in IC; AKR1C2 and MKNK1 were increased in IC. Conclusions: Differentiation-associated changes occurred in both IC and control cells. Comparing IC vs. control revealed very few differences. This study may have included IC patients with minimal urothelial deficiency and/or selected the cells that were most robust in culture. Also, the abnormal urothelium in IC may be due to post-translational changes and/or the bladder environment.
Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells.
Disease
View SamplesColorectal cancer (CRC) is a heterogeneous disease classified into four consensus molecular subtype (CMSs) with distinct biological and clinical features. This study aims to understand the value of patient-derived xenografts (PDXs) in relation to these CMSs. A total of 42 primary tumors, recurrences and metastases were used to develop PDXs. Detailed genetic analyses were performed on PDXs and corresponding patient tumors to determine relationship and PDX heterogeneity. Out of 42 tumors 22 (52%) showed successfully PDX engraftment, which was biased towards metastases and CMS1 and CMS4 tumors. Importantly, gene expression analysis revealed a clinical relevant association between an engraftment gene signature and prognosis for stage II patients. Moreover, this gene signature revealed an association between Src pathway activation and positive engraftment. Src pathway activity co-aligned with CMS4 and the levels of fibronectin in tumors and was confirmed by pSrc immunohistochemistry. From this analysis we further deduced that decreased cell cycle activity is a prognostic factor for successful engraftment and related to patient prognosis. However, this is not a general phenomenon, but subtype specific as decreased cell cycle activity was highly prognostic for recurrence-free survival within CMS2 but not in CMS1 and CMS4, while it showed an inverse correlation in CMS3. These data illustrate that CRC PDX establishment is biased toward CMS1 and CMS4, which impacts translation of results derived from pre-clinical studies using PDXs. Moreover, our analysis reveals subtype-specific features, pSrc in CMS4 and low Ki67 in CMS2, which provide novel avenues for therapy and diagnosis.
Capturing colorectal cancer inter-tumor heterogeneity in patient-derived xenograft (PDX) models.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesTo analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.
Specimen part
View SamplesThe cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of disistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. Combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.
Cell line, Treatment
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons
Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.
No sample metadata fields
View Samples