The oviducts contain high grade serous cancer precursors, which are -H2AXp and p53 mutation positive. Secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer. We evaluated PAX2 expression in proliferating oviductal cells, normal mucosa, SCOUTs, Walthard cell nests, STINs and HGSCs. Non-ciliated cells in normal mucosa were PAX2 positive but became PAX2 negative in multilayered epithelium. PAX2 negative SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a tubal phenotype and were ALDH1 negative. Type II displayed a columnar to pseudostratified phenotype, with an EZH2,ALDH1, -catenin, Stathmin, LEF1, RCN1 and RUNX2 expression signature . This study, for the first time, links PAX2 negative with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2) calcium binding (RCN1) and oncogenesis (Stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target of early prevention.
The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium.
Sex, Specimen part, Disease
View SamplesPreeclampsia complicates more than 3% of all pregnancies in the United States and Europe. High-risk populations include women with diabetes, dyslipidemia, thrombotic disorders, hyperhomocysteinemia, hypertension, renal diseases, previous preeclampsia, twin pregnancies, and low socioeconomic status. In the latter case, the incidence may increase to 20% to 25%. Preeclampsia is a major cause of maternal and fetal morbidity and mortality. Preeclampsia is defined by systolic blood pressure of more than 140 mm Hg and diastolic blood pressure of more than 90 mm Hg after 20 weeks gestation in a previously normotensive patient, and new-onset proteinuria. Abnormal placentation associated with shallow trophoblast invasion (fetal cells from outer cell layer of the blastocyst) into endometrium (decidua) and improper spiral artery remodeling in the decidua are initial pathological steps.
Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia.
No sample metadata fields
View SamplesTumor growth and metastasis is controlled by paracrine signaling between cells of the tumor microenvironment and malignant cells. Cancer-associated fibroblasts (CAFs), are functionally important components of the tumor microenvironment. Although some steps involved in the cross-talk between these cells are known, there is still a lot that is not clear. Thus, the addition of, the consideration of microenvironment in the development of the disease, to the clinical and pathological procedures (currently admitted as the consistent value cancer treatments) could lay the foundations for the development of new treatment strategies to control the disease.
Functional heterogeneity of cancer-associated fibroblasts from human colon tumors shows specific prognostic gene expression signature.
Specimen part
View SamplesPurpose: Evaluate gene expression profiles after inducing differentiation in cultured interstitial cystitis (IC) and control urothelial cells. Materials and Methods: Bladder biopsies were taken from IC patients and controls (women having surgery for stress incontinence). Primary cultures were grown in Keratinocyte Growth Medium with supplements. To induce differentiation, in some plates the medium was changed to DMEM-F12 with supplements. RNA was analyzed with Affymetrix chips. Three nonulcer IC patients were compared with three controls. Results: After inducing differentiation, 302 genes with a described function were altered at least 3-fold with p <0.01 in both IC and control cells. Functions of the162 upregulated genes included cell adhesion (e.g. claudins, occludin, cingulin); urothelial differentiation, retinoic acid pathway and keratinocyte differentiation (e.g. skin cornified envelope components). The 140 downregulated genes included genes associated with basal urothelium (e.g. p63, integrins ?4, ?5 and ?6, basonuclin 1 and extracellular matrix components), vimentin, metallothioneins and members of the Wnt and Notch pathways. Comparing IC vs. control cells after differentiation, only seven genes with a described function were altered at least 3-fold with p <0.01. PI3, SERPINB4, CYP2C8, EFEMP2 and SEPP1 were decreased in IC; AKR1C2 and MKNK1 were increased in IC. Conclusions: Differentiation-associated changes occurred in both IC and control cells. Comparing IC vs. control revealed very few differences. This study may have included IC patients with minimal urothelial deficiency and/or selected the cells that were most robust in culture. Also, the abnormal urothelium in IC may be due to post-translational changes and/or the bladder environment.
Differentiation associated changes in gene expression profiles of interstitial cystitis and control urothelial cells.
Disease
View SamplesThere is a need for reliable prognostic markers that can guide therapeutic intervention in Crohn’s disease (CD). We examined whether different behavioral phenotypes in CD can be classified based on colonic miRNA or mRNA expression and if miRNAs have prognostic utility for CD. We perform high-throughput sequencing of small RNA and mRNA isolated from colon tissue from CD patients and non-IBD (NIBD) controls. To identify miRNA and genes associated with specific behavioral phenotypes of CD, patients were stratified according to disease behavior (non-stricturing, non-penetrating; stricturing; penetrating) and compared miRNA profiles in each class with those of the NIBD group. Using a novel statistical simulation approach applied to colonic RNA-seq data for CD patients and NIBD controls, we identify at drivers of gene expression profiles associated with CD. Overall design: Macroscopically non-inflamed colon tissue from well-characterized Crohn''s disease patients and normal controls were obtained. Small RNA-seq and RNA-seq were performed on these samples. Additionally, we investigated the effect of inflammation on miRNA expression by performing small RNA-seq on matched colon samples obtained from macroscopically inflamed regions from a subset (six) of these patients with Crohn''s Disease.
MicroRNAs Classify Different Disease Behavior Phenotypes of Crohn's Disease and May Have Prognostic Utility.
No sample metadata fields
View SamplesTo analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.
Specimen part
View SamplesThe cell differentiation potential of 13-cis retinoic acid (RA) has not succeeded in the clinical treatment of glioblastoma (GBM) so far. However, RA may also induce the expression of disistance genes such as HOXB7 which can be suppressed by Thalidomide (THAL). Therefore, we tested if combined treatment with RA+THAL may inhibit growth of glioblastoma in vivo. Treatment with RA+THAL but not RA or THAL alone significantly inhibited tumour growth. The synergistic effect of RA and THAL was corroborated by the effect on proliferation of glioblastoma cell lines in vitro. HOXB7 was not upregulated but microarray analysis validated by real-time PCR identified four potential resistance genes (IL-8, HILDPA, IGFBPA, and ANGPTL4) whose upregulation by RA was suppressed by THAL. Furthermore, genes coding for small nucleolar RNAs (snoRNA) were identified as a target for RA for the first time, and their upregulation was maintained after combined treatment. Pathway analysis showed upregulation of the Ribosome pathway and downregulation of pathways associated with proliferation and inflammation. Combined treatment with RA + THAL delayed growth of GBM xenografts and suppressed putative resistance genes associated with hypoxia and angiogenesis. This encourages further pre-clinical and clinical studies of this drug combination in GBM.
Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours in vivo.
Cell line, Treatment
View SamplesMicroarray analysis of gene expression in the olfactory epithelium of Harlequin mouse as a model of oxidative-stress induced neurodegeneration of olfactory sensory neurons
Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse.
No sample metadata fields
View SamplesNeural crest cells migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system.
Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation.
Specimen part
View SamplesSIRT1 deacetylase functions in a variety of cells and tissues to mitigate age- and disease-induced damages. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor units, and specifically alpha-motor neurons, with advancing age and during the progression of amyotrophic lateral sclerosis (ALS). Here, we show that SIRT1 expression decreases in the spinal cord of wild type mice with advancing age. Using mouse models that overexpress or inactivate SIRT1 in motor neurons, we discovered that SIRT1 prevents age-related degeneration of motor neurons' presynaptic sites at neuromuscular junctions (NMJs). We also found that increasing SIRT1 in motor neurons delays degeneration of presynaptic sites at NMJs and extends the lifespan of SOD1G93A mice. Thus, SIRT1 has a similar effect on aging and ALS-affected motor neurons, two conditions in which a remarkable number of transcripts are similarly altered in the spinal cord. These include genes involved in inflammatory and immune responses and genes with known function at synapses. These findings show that SIRT1 functions to mitigate pathological changes induced by aging and ALS, two conditions with a surprising degree of overlap in the spinal cord. Overall design: Eight replicates spinal cords from mice aged 18-24 months, eight replicates of spinal cords from mice aged 3-4 months, 3 replicates of spinal cords from ALS symptomatic mice aged 5-6 months and 3 replicates of spinal cords from wt controls aged 5-6 months.
SIRT1 deacetylase in aging-induced neuromuscular degeneration and amyotrophic lateral sclerosis.
Cell line, Subject
View Samples