We report the impact of heterozygous loss of either Pdx1 or Oc1 on the developing pancreas at e15.5 Overall design: mRNA of mouse pancreata at embryonic day 15.5 from control, Pdx1Lac/+, Oc1+/- and double heterozygous (Pdx1LacZ/+;Oc1+/-) embryos
Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and β-Cell Function.
Specimen part, Cell line, Subject
View SamplesWe used microarrays to detail the global program of gene expression underlying Parkinson's disease
A genomic pathway approach to a complex disease: axon guidance and Parkinson disease.
No sample metadata fields
View SamplesMutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, though, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on upregulation of the transcription factor ZEB1 and downregulation of the mir-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis
Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).
Cell line
View SamplesMost commonly used models of non-alcoholic steatohepatitis (NASH) are diets based on specific gene knockouts or represent extreme manipulations of diet. We have examined the effects of modest increased caloric intake and high dietary unsaturated fat content on the development of NASH in male rats using a model in which overfeeding is accomplished via intragastric infusion of liquid diets as a part of total enteral nutrition. Male Sprague dawley rats were fed diets 5% corn oil containing diets at 187 Kcal/kg3/4/d or fed 70% corn oil containing diets at 220 Kcal/kg3/4/d for a period of 3 weeks. Hepatic gene expression were assessed at the end of the study. Our results indicate that overfeeding of high unsaturated fat diets leads to pathological, endocrine and metabolic changes characteristic of NASH patients and is associated with increased oxidative stress and TNF-a.
A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet.
No sample metadata fields
View SamplesSoy foods have been suggested to have both positive health benefits and potentially adverse effects largely as a result of their content of isoflavone phytoestrogens. Since soy protein isolate (SPI) contains isoflavones, in addition to purported health benefits, safety concerns have been raised regarding the use of SPI and soy formulas, because of potential estrogenic actions during the neonatal period, including the potential for reproductive toxicity, infertility, and the possibility of increased risk for development and recurrence of estrogen sensitive cancers such as breast cancer. In the current study, we used a rat model to compare the effects of SPI with those of 17b-estradiol (E2), on global gene expression profiles and morphology in the female rat mammary gland. Rats were either fed AIN-93G diets containing casein (CAS) or SPI beginning on postnatal day (PND) 30.
Mammary gland morphology and gene expression differ in female rats treated with 17β-estradiol or fed soy protein isolate.
Sex
View SamplesThe current study was designed to determine if dietary fatty acid concentration and composition affects the development and progression of nonalcoholic fatty liver disease. Male SD rats were overfed diets low (5%) or high (70%) fat diets via total enteral nutrition where the fat source was olive oil (monounsaturated), or corn oil (polyunsaturated). Overfeeding 5% corn oil produced little steatosis relative to feeding 5% olive oil. This was associated with lower fatty acid synthesis and reduced SREBP-c signaling in the 5% corn oil group. Overfeeding 70% fat diets increased steatosis and lead to increased liver necrosis in the 70% corn oil but not olive oil group. Increased injury after feeding polyunsaturated fat diets was linked to peroxidizability of hepatic free fatty acids and triglycerides and appearance of peroxidaized lipid products HETES and HODES previously linked to clinical nonalcoholic steatohepatitis.
Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition.
Sex
View SamplesIn order to properly understand whether xenoestrogens act as estrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. Because the estrogen-dependent gene expression is one of the primary biomarkers of estrogenic action, we have assessed effects of three doses of exogenous estradiol (0.1, 1.0 and 10 g/kg of body weight/day) on the mammary gland morphology and gene expression profiles by microarray analysis of prepubertal male and female rats of both sexes compared to untreated controls. Estradiol was administered subcutaneously with minipumps from weaning at PND21 to the end of the experiment at PND33. The data suggest that the male mammary is a sensitive tissue for estrogenicity assessment.
Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol.
Sex
View SamplesIn order to study the transcriptional response of the fly brain to sugar and complete starvation, we first confirmed that 24 hours of sugar and complete starvation in flies is sufficient to elicit a homeostatic response. Subsequently, we used holidic medium to study effects of deficiency of a specfic macronutrient- cabohydrate in the food. To do so , we generated RNA- seq libraries from brains of 5 day old mated adult male flies maintained on different feeding regimes and used the sequencing data to identify diffrentially expressed genes in the brain under different feeding regimes. Overall design: For each condition, we used RNA prepared from 120-130 manually dissected adult fly brains maintained under complete starvation or sugar starvation regime for 24 hours.
Sugar Promotes Feeding in Flies via the Serine Protease Homolog scarface.
Sex, Specimen part, Cell line, Subject
View SamplesWhile the existence of intestinal epithelial stem cells (IESCs) has been well established, their study has been limited due to the inability to isolate them. Previous work has utilized side population (SP) sorting of the murine small intestinal mucosa to isolate a viable fraction of cells enriched for putative IESCs. We have used microarray analyses to characterize the molecular features of this potential stem cell population.
Molecular properties of side population-sorted cells from mouse small intestine.
No sample metadata fields
View SamplesWe applied genome-wide profiling to successive salt-extracted fractions of micrococcal nuclease-treated Drosophila chromatin. Chromatin fractions extracted with 80mM or 150mM NaCl after digestion contain predominantly mononucleosomes and represent calssical 'active' chromatin. Profiles of these low-salt-soluble fractions display phased nucleosomes over transcriptionally active genes that are locally depleted of histone H3.3 and correspond closely to profiles of RNA polymerase II. Nearly quantitative recovery of chromatin is obtained with 600mM NaCl, however, the remaining insoluble chromatin is enriched in actively transcribed regions. Salt-insoluble chromatin likely represents oligonucleosomes that are attached to large protein complexes. Both low-salt extracted and insoluble chromatin are rich in sequences that correspond to epigenetic regulatory elements genome-wide. The presence of active chromatin at both extremes of salt solubility suggests that these salt fractions capture bound and unbound intermediates in active processes, thus providing a simple, powerful strategy for mapping epigenome dynamics.
Genome-wide profiling of salt fractions maps physical properties of chromatin.
Specimen part
View Samples