Human Peptidoglycan Recognition Proteins (PGRPs) kill bacteria, likely by over-activating stress responses in bacteria. To gain insight into the mechanism of PGRP killing of Escherichia coli and bacterial defense against PGRP killing, gene expression in E. coli treated with a control protein (bovine serum albumin, BSA), human recombinant PGRP (PGLYRP4), gentamicin (aminoglycoside antibiotic), and CCCP (membrane potential decoupler) were compared. Each treatment induced unique and somewhat overlapping pattern of gene expression. PGRP highly increased expression of genes for oxidative and disulfide stress, detoxification and efflux of Cu, As, and Zn, repair of damaged proteins and DNA, methionine and histidine synthesis, energy generation, and Fe-S clusters repair. PGRP also caused marked decrease in the expression of genes for Fe uptake and motility.
Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.
Specimen part
View SamplesThe insulin-like growth factor-I (IGF-IR) and androgen (AR) receptors are important players in prostate cancer biology. Functional interactions between the IGF-I and androgen signaling pathways seem to have crucial roles in the progression of prostate cancer from early (benign) to advanced (metastatic) stages. DNA methylation is a major epigenetic alteration affecting gene expression. Hypermethylation of tumor suppressor promoters is a frequent event in human cancer, leading to inactivation and repression of specific genes. The aim of the present study was to identify the entire set of methylated genes (methylome) in a cellular model that replicates prostate cancer progression.
Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer.
Cell line, Treatment, Time
View SamplesThe study aims to define gene expression changes associated with mithramycin treatment of Ewing Sarcoma cell lines.
Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening.
Cell line, Treatment
View SamplesPurpose: we tested the hypothesis that Hltf deletion in placenta either caused or exacerbated neonatal hypoglycemia via Hif-1a regulation of nutrient transporters. Methods: Individual samples [1 term placenta/sample x 5 biological replicates for test and control littermate female mice = 10 total samples] were flash frozen and sent to Otogenetics Corp. (Norcross, GA) for RNA-seq assays. Paired-end 100 nucleotide reads were aligned to genomic assembly mm10 and analyzed using the platform provided by DNAnexus, Inc. (Mountain View, CA). Results: There was no measureable evidence of uteroplacental dysfunction or fetal compromise. Conclusion: Our study is the first to show only the truncated Hltf isoform is expressed in E18.5 term placenta, and we identified a functional link between alternative splicing of Hltf and immunosuppression at the feto-maternal interface. Overall design: Placental mRNA profiles of E18.5 term placenta from five wild type control and five Hltf null mouse samples were generated by deep sequencing by Illumina HiSeq2000/2500.
Alternative splicing of helicase-like transcription factor (Hltf): Intron retention-dependent activation of immune tolerance at the feto-maternal interface.
Specimen part, Cell line, Subject
View SamplesGene expression from pre- and post- Cediranib treated patients with metastatic Alveolar Soft Part Sarcoma (ASPS)
Cediranib for metastatic alveolar soft part sarcoma.
Time
View SamplesChronic alcohol ingestion changes the alveolar landscape. We used microarrays to characterize the change in mRNA expression following chronic alcohol ingestion in male Sprague Dawley rates (EtOH 36% of calories)
Chronic ethanol exposure alters the lung proteome and leads to mitochondrial dysfunction in alveolar type 2 cells.
Sex, Specimen part
View SamplesDAP12 is a transmembrane protein, expressed as a disulfide-bonded homodimer and bears an immunoreceptor tyrosine-based activation motif (ITAM). DAP12 is broadly expressed in hematopoietic cells and associates with a variety of cell surface receptors in lymphoid and myeloid cells. Macrophages express several DAP12-associated receptors including triggering receptors expressed by myeloid cells (TREM)-1,2 and 3, myeloid DAP12-associating lectin (MDL)-1, CD200R like proteins CD200R3/R4 and CD300C/D/E .
Essential role of DAP12 signaling in macrophage programming into a fusion-competent state.
No sample metadata fields
View SamplesIn this experiment, total RNA was extracted from asynchronous population of L1210 cells and hybridized to Affymetrix 430A 2.0 arrays in order to obtain an expression profile of these cells. We have previously mapped the replication timing of the entire mouse genome in this cell line, using mouse CGH arrays (see E-MEXP-1022). We wanted to validate in our system the known correlation between early replication and expression and to analyze its extent. To this end, we have measured the expression in the same cell line (L1210 cells). Two biological replicates were hybridized to 2 identical microarrays. Expression levels were highly similar between the 2 replicates (r=0.98).
Global organization of replication time zones of the mouse genome.
Cell line, Subject
View SamplesGene expression profiling of macrophages derived from WT and Vdr deficient mice after stimulation with IFNgamma and/or 1alpha,25(OH)2D3
1alpha,25-Dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation.
No sample metadata fields
View SamplesTo identify in vivo new cardiac SRF target genes and to study the response of these novel genes to SRF overexpression, we employed a cardiac-specific, transgenic mouse model that has a phenotype in young adulthood which resembles that of the typically aged heart. Using this cardiac aging model, we identified 207 genes that are important to cardiac function that were differentially expressed in vivo. Among them, 192 genes had SRF binding motifs (56 with CArG and 136 with CArG-like elements) in their promoter region. Fifty-one of 56 genes with classic CArG elements were not previously reported. These SRF target genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes were significantly increased. Using public databases of mouse models of stress, we also found that altered expression of the SRF target genes occurred in these hearts as well. Thus, SRF target genes are actively regulated under various physiological and pathological conditions, including hemodynamic stress. The mild elevation of SRF protein in the rodent heart that is observed during typical adult aging may have a major impact on many SRF target genes, thereby affecting cardiac structure and performance. In addition, these results could help to enhance our understanding of SRF regulation of cellular processes, including metabolic and cytoskeletal function.
Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts.
No sample metadata fields
View Samples