Human bone marrow is a complex, diversified and well-organized hematopoietic network changing composition with age. The purpose of this study was to analyze variations in relative precursor B cell abundance in bone marrow with age by means of global gene expression profiling. RNA was isolated from composite bone marrow from 25 healthy children, adolescents and adults age 2 months to 28 years. As reference transcript for precursor B cells we used recombination activating gene RAG1 exploring the data for other transcripts showing the same profile as RAG1 with age. We identified 54 genes with correlated expression profiles to RAG1 (r 0.9, p = 0), characterized by high expression at 3 - 20 months followed by a fast decline to lower signal levels maintained until early adulthood. Immunophenotyping from a similar healthy age-matched cohort (n = 37) showed a comparable decrease of precursor B cells. Of the 54 genes 15 were characteristically B cell associated representing cell surface molecules (CD19, CD72, CD79A, CD79B, CD180, IGL@, IGLL1, VPREB1, VPREB3), a signal transduction molecule (BLNK) and transcription factors (DNTT, EBF1, PAX5, POU2AF1, RAG2). Of the remaining transcripts some may represent novel B cell transcripts or genes involved in control of B cells.
Striking decrease in the total precursor B-cell compartment during early childhood as evidenced by flow cytometry and gene expression changes.
No sample metadata fields
View SamplesPurpose:To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. Methods: We employed piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. Results: RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. Overall design: To address if the fludarabine-resistant HG3 cells were transcriptionally different at a global level compared to their parental cells, we performed RNA-sequencing of three pairs of HG3 pools
Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion.
Specimen part, Cell line
View SamplesGene-expression in siRNA treated U2OS and hTERT-RPE1 cells showed that CASP8AP2, NPAT and HINFP do not regulate expression of each other, and do not have any common target genes, except histones. Most histone genes are downregulated in U2OS cells following loss of CASP8AP2, NPAT or HINFP. In normal cells, highly-expressed histone genes were downregulated, albeit less than in tumor cells following loss of CASP8AP2. The p53 target genes were upregulated relatively late, clearly after the changes in expression of histone genes were observed.
Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion.
Cell line
View SamplesMultiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. During active multiple sclerosis foamy macrophages and microglia, containing degenerated myelin, are abundantly found in demyelinated areas. Recent studies have described an altered macrophage phenotype after myelin internalization. However, by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression is unclear.
Myelin-derived lipids modulate macrophage activity by liver X receptor activation.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesIdentified genes deregulated in mouse primary hepatocytes after modulation of expression/activity of FOXA2 and FXR in glucagon or insulin state
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesTranscriptome analysis of RNAs extracted from 2 hour-TGF-b-treated or untreated LX-2 cells with or without STAT3 knockdown
Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway.
Treatment, Time
View SamplesMouse hair follicles undergo synchronized cycles. Cyclical regeneration and hair growth is fueled by stem cells (SCs). Following hair regeneration, SCs within the bulge and its vicinity (upper ORS which becomes the bulge for the next cycle) briefly self-renew to replenish expended SCs and ensure long-term tissue regeneration.
An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration.
Sex, Specimen part
View Samples