Ixodes species ticks are competent vectors of tick-borne viruses including tick-borne encephalitis and Powassan encephalitis. Tick saliva has been shown to facilitate and enhance viral infection. This likely occurs by saliva-mediated modulation of host responses into patterns favorable for viral infection and dissemination. Because of the rapid kinetics of tick-borne viral transmission, this modulation must occur as early as tick attachment and initiation of feeding. In this study, the gene expression profile of cutaneous bite-site lesions created by uninfected ticks were analyzed at 1, 3, 6, and 12 hours after Ixodes scapularis nymphal tick attachment to discover host pathways or responses potentially important in tick-borne viral establishment.
Early immunologic events at the tick-host interface.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex, Cell line
View SamplesPrimary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex
View SamplesPrimary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis.
Specimen part
View SamplesBACKGROUND & AIMS: We performed an integrated analysis to identify microRNAs (miRNAs) and mRNAs with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues.
microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis.
Specimen part
View SamplesWe performed RNA-Seq and compared expression levels of genes of reactivated LCMV.GP66-77 specific CD4 T cells isolated from bone marrow (BM) and spleen of LCMV.GP61-80 primed C57BL/6 mice. Cells were isolated 3 days after antigenic re-challenge Overall design: C57BL/6 mice were primed at day 0 with LCMV.GP61-80-NP-MSA + poly(I:C) and immunized again at day 14 with LCMV.GP61-80 + poly(I:C). 60 days later, C57BL/6 mice were boosted with LCMV.GP61-80-NP-MSA + poly(I:C) and 3 days after the boost, LCMV specific CD4 T cells were isolated from BM and spleen
Nonfollicular reactivation of bone marrow resident memory CD4 T cells in immune clusters of the bone marrow.
Age, Specimen part, Cell line, Subject
View SamplesAsthma is caused by a combination of poorly understood genetic and environmental factors. We found multiple markers on chromosome 17q21 to be strongly and reproducibly associated with childhood onset asthma in family and case-referent panels with a combined P < 10-12. In independent replication studies the 17q21 locus showed strong association with diagnosis of childhood asthma in 2,320 subjects from a cohort of German children (P = 0.0003) and in 3,301 subjects from the British 1958 Birth Cohort (P = 0.0005). We systematically evaluated the relationships between markers of the 17q21 locus and transcript levels of genes in EBV-transformed lymphoblastoid cell lines from children in the asthma family panel used in our association study. The SNPs associated with childhood asthma were consistently and strongly associated (P <10-22) in cis with transcript levels of ORMDL3, a member of a gene family that encode transmembrane proteins anchored in the endoplasmic reticulum. The results indicate that genetic variants regulating ORMDL3 expression are determinants of susceptibility to childhood asthma.
Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma.
Sex
View SamplesGene expression profiling of in vitro differentiated murine Th cell subsets. Flow cytometrically sorted naive Th cells (CD4+ CD44- Foxp3-) were polyclonally stimulated in vitro for 3 days using 4 g/ml plate-bound antibody to CD3 (145-2C11) and 2 g/ml soluble antibody to CD28 (PV-1).
IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tissue-specific genetic control of splicing: implications for the study of complex traits.
Sex, Age
View Samples