We sequenced whole adipose tissue from control and LCMV infected mice 6dpi, in control vs T cell-specific IFNAR knockoutmice to understand the transcriptional changes in adipose tissue upon loss of type I IFN-T cell singaling axis, and how it contributes to cachexia. Overall design: inguinal fat pad (after removing iLN) was used for sequencing in control and infected mice (LCMV clone13 2x10^6PFU), this was done in two genotypes (IFNARfl/fl) as controls, vs (IFNARfl/fl-CD4cre/+) as T-cell specific IFNAR knockouts.
CD8<sup>+</sup> T cells induce cachexia during chronic viral infection.
Specimen part, Subject
View SamplesThe goal of the study is a high-throughput evaluation of the effect of TGFb treatment on gene expression.
Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex, Cell line
View SamplesPrimary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex
View SamplesPrimary liver cancer represents a major health problem. It comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), which differ markedly with regards to their morphology, metastatic potential and therapy response. Yet, molecular actors and tissue context that commit transformed hepatic cells towards HCC or ICC are largely unknown. Here, we report that the hepatic microenvironment epigenetically shapes lineage commitment in mosaic mouse models of liver tumourigenesis. While a necroptosis associated hepatic cytokine microenvironment determines ICC outgrowth from oncogenically transformed hepatocytes, hepatocytes harbouring identical oncogenic drivers give rise to HCC if surrounded by apoptotic hepatocytes. Epigenome and transcriptome profiling of murine HCC and ICC singled out Tbx3 and Prdm5 as major microenvironment-dependent and epigenetically regulated lineage commitment factors, a function conserved in humans. Together, our study provides unprecedented insights into lineage commitment in liver tumourigenesis and explains molecularly why common liver damaging risk factors can either lead to HCC or ICC.
Necroptosis microenvironment directs lineage commitment in liver cancer.
Sex, Cell line
View SamplesMicroglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.
USP18 lack in microglia causes destructive interferonopathy of the mouse brain.
Specimen part
View SamplesMicroglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.
USP18 lack in microglia causes destructive interferonopathy of the mouse brain.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
USP18 lack in microglia causes destructive interferonopathy of the mouse brain.
Specimen part
View SamplesRecent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.
Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.
Specimen part
View Samples183 breast tumors from the Helsinki Univerisity Central Hospital with survival information
Variants on the promoter region of PTEN affect breast cancer progression and patient survival.
No sample metadata fields
View Samples