IRAK4 kinase plays a critical role in innate immune responses and inflammation by modulating the TLR/IL-1R signaling pathway, yet the mechanism by which it regulates downstream pathways and transcription factors to induce inflammatory cytokines is unclear. IRAK4 can mediate signaling events by mechanisms both dependent and independent of its kinase activity. Understanding this regulation is important for deciphering the role of IRAK4 and for the development of treatments for inflammatory diseases and cancer. Through transcriptomic and biochemical analyses of primary human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the transcription factor IRF5 which in turn induces inflammatory cytokine and type I interferon transcription in myeloid cells. We also show that IRAK4 kinase activity does not control activation of NF-B. Following TLR stimulation, translocation of IRF5, but not NF-B, to the nucleus in human monocytes is abolished by IRAK4 kinase inhibition. In addition, binding of IRF5, but not NF-B p65, to promoters of inflammatory target genes (TNF- and IP10) is blocked with an IRAK4 kinase inhibitor. IKK, a known activator of IRF5, is phosphorylated in response to TLR mediated signaling, and inhibition of IRAK4 kinase blocks IKK phosphorylation. Pharmacological inhibition of IKK and TAK1, the upstream kinase of IKK, in human monocytes blocks IL-1, IL-6 and TNF- cytokine production, as well as IRF5 translocation to the nucleus. Taken together, our data suggest a novel mechanism by which IRAK4 kinase activity regulates TAK1 and IKK activation, leading to the translocation of IRF5 and induction of inflammatory cytokines in human monocytes.
IRAK4 kinase activity controls Toll-like receptor-induced inflammation through the transcription factor IRF5 in primary human monocytes.
Treatment
View SamplesMedulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s) of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options.
Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis.
Sex, Age
View SamplesProvides a set of enriched normal colon epithelial cells to use as a baseline for disease of the colon
Normal colon epithelium: a dataset for the analysis of gene expression and alternative splicing events in colon disease.
Sex
View SamplesKMS-11 and KMS-34 cells were exposed to stepwise increasing concentrations of carfilzomib over a period of 18 weeks: cells adapted to growth in 4 nM carfilzomib by 4 weeks, in 6 nM in another 6 weeks and in 12 nM after a further 8 weeks. The resulting cell cultures, denoted KMS-11/Cfz and KMS-34/Cfz, respectively, retained resistance to carfilzomib even when tested after removal of selective pressure for approximately 8 weeks.
KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.
Specimen part, Subject
View SamplesIntroduction: A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine complementary analyses that assess changes in the copy number alterations (CNAs). This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions that demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes.
Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast.
Specimen part, Subject
View SamplesInhibition of the nonsense mediated decay (NMD) mechanism in cells results in stabilization of transcripts carrying premature translation termination codons. A strategy referred to as gene indentification by NMD inhibition (GINI) has been proposed to identify genes carrying nonsense mutations (Noensie & Dietz, 2001). Genes containing frameshift mutations in colon cancer cell line have been identifying mutatnt genes using GINI, we have now further improved the strategy. In this approach, inhibition of NMD with emetine is complemented with inhibiting NMD by blocking the phosphorylation of the hUpf1 protein with caffeine. In addition, to enhance the GINI strategy, comparing mRNA level alterations produced by inhibiting transcription alone or inhbiiting transcription together with NMD following caffeine pretreatment were used for the efficient identification of false positives produced as a result of stress response to NMD inhibition. To demonstrate the improved efficiency of this approach, we analyzed colon cancer cell lines showing microstellite instability. Bi-allelic inactivating mutations were found in the FXR1, SEC1L1, NCOR1, BAT3, PHD14, ZNF294, C190ORF5 genes as well as genes coding for proteins with yet unknown functions.
Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells.
No sample metadata fields
View SamplesLP-1 cells were exposed to stepwise increasing concentrations of carfilzomib over a period of 18 weeks: cells adapted to growth in 4 nM carfilzomib by 4 weeks, in 6 nM in another 6 weeks and in 12 nM after a further 8 weeks. The resulting cell culture, denoted LP-1/Cfz, retained resistance to carfilzomib even when tested after removal of selective pressure for approximately 8 weeks.
Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.
Cell line
View SamplesThe goal of this work was to identify all estrogen receptor beta target genes using RNA sequencing in MDA-MB-468 triple negative breast cancer cells engineered with inducible expression of full length estrogen receptor beta. Overall design: MDA-MB-468 breast cancer cells with inducible ERb expression (MDA-468-ERb cells) were treated in triplicate with vehicle (control, no ERb) or doxycycline (plus ERb) for 48 hr prior to treatment with 0.1% DMSO vehicle or 10 nM 17b-estradiol for 4 hr.
Research resource: global identification of estrogen receptor β target genes in triple negative breast cancer cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
Specimen part, Cell line
View Samples