Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.
Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans.
No sample metadata fields
View SamplesThe plasticity of ageing suggests that longevity may be controlled epigenetically by specific alterations in chromatin state. The link between chromatin and ageing has mostly focused on histone deacetylation by the Sir2 family1, 2, but less is known about the role of other histone modifications in longevity. Histone methylation has a crucial role in development and in maintaining stem cell pluripotency in mammals3. Regulators of histone methylation have been associated with ageing in worms4, 5, 6, 7 and flies8, but characterization of their role and mechanism of action has been limited. Here we identify the ASH-2 trithorax complex9, which trimethylates histone H3 at lysine 4 (H3K4), as a regulator of lifespan in Caenorhabditis elegans in a directed RNA interference (RNAi) screen in fertile worms. Deficiencies in members of the ASH-2 complexASH-2 itself, WDR-5 and the H3K4 methyltransferase SET-2extend worm lifespan. Conversely, the H3K4 demethylase RBR-2 is required for normal lifespan, consistent with the idea that an excess of H3K4 trimethylationa mark associated with active chromatinis detrimental for longevity. Lifespan extension induced by ASH-2 complex deficiency requires the presence of an intact adult germline and the continuous production of mature eggs. ASH-2 and RBR-2 act in the germline, at least in part, to regulate lifespan and to control a set of genes involved in lifespan determination. These results indicate that the longevity of the soma is regulated by an H3K4 methyltransferase/demethylase complex acting in the C. elegans germline.
Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans.
Treatment
View SamplesPurpose:
Sequential gene expression profiling during treatment for identification of predictive markers and novel therapeutic targets in chronic lymphocytic leukemia.
Treatment
View SamplesThe autoregulation of mycorrhization (AOM) describes a plant regulatory mechanism that limits the number of infection events by arbuscular mycorrhizal fungi. The key signal mediator is a receptor kinase (GmNARK) that acts in the shoots. Early signals of the mycorrhizal symbiosis induce a root-derived signal that activates GmNARK in the shoot finally leading to a systemic repression of subsequent infections in the root. So far, less is known about the signals down-stream of GmNARK. To find genes regulated by GmNARK in a mycorrhiza-dependent as well as in a mycorrhiza-independent manner, we used the Affymetrix GeneChip for soybean. In general, mycorrhizal root systems consist of both colonized and non-colonized, but autoregulated roots. To physically separate those two root types for transcript analysis of specifically regulated genes, we used the split-root system. Transcript profiling during AOM was done with material of Bragg wild-type and of the nark mutant nts1007, either non-inoculated or partially inoculated with the mycorrhizal fungus Rhizophagus irregularis (formerly Glomus intraradices). Wild-type and nark mutants were inoculated with R. irregularis on one half of the root-systems (root-parts "A") only. The remaining half of the root-systems stayed non-infected (root-parts "B"). Corresponding controls stayed completely non-infected. Gene expression was analyzed in inoculated root-parts, non-inoculated root-parts and shoots of three individual plants per treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Sara Schaarschmidt. The equivalent experiment is GM53 at PLEXdb.]
Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.
Age, Specimen part
View SamplesTo search for rapid changes in gene expression following BCR activation, we performed DNA microarray analysis of activated splenic B cells with and without anti-IgM treatment for 3 hour. The expression of a remarkably large set of genes differed significantly.
Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A.
Age, Specimen part
View SamplesRNA-Seq technique was applied to investigate the effects of four cDNA amplification kits and two RNA-Seq library preparation kits to the deep sequencing results at different perspectives. Overall design: The same set of semen samples were applied to investigate the qualitative and quantitative effect of four cDNA amplification methods and two RNA-Seq library preparation methods on sperm transcript profiling.
A comparison of sperm RNA-seq methods.
No sample metadata fields
View SamplesRNA-Seq technique was applied to investigate the effects of two semen collection methods (Pelleted vs Liquefied) and two sperm purification methods (SCLB vs PS) to the integrity of isolated RNAs at different perspectives. Overall design: The same set of semen samples were applied to investigate the qualitative and quantitative effect of semen collection methods and sperm cell purification methods on sperm transcript profiling.
Evaluation of the effectiveness of semen storage and sperm purification methods for spermatozoa transcript profiling.
Subject
View SamplesAlthough mast cells elicit proinflammatory and type I IFN responses upon VSV infection, in response to L.monocytogenes (L.m) or S. Typhimurium (S.t), such cells elicit a transcriptional program devoid of type I IFN response.
Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria.
Specimen part
View SamplesInterferons have been ascribed to mediate antitumor effects. IRF-1 is a major target gene of interferons. It inhibits cell proliferation and oncogenic transformation. Here we show that 60% of all mRNAs deregulated by oncogenic transformation mediated by c-myc and H-ras are reverted to the expression levels of non-transformed cells by IRF-1. These include cell cycle regulating genes. Activation of IRF-1 decreases cyclin D1 expression and CDK4 kinase activity concomitant with dephosphorylation of pRb. These effects of IRF-1 are mediated by inhibition of the MEK-ERK pathway and a transcriptional repression of cyclin D1. IRF-1 mediated effects on cell cycle progression were found to be overridden by ectopic expression of cyclin D1. Ablation of cyclin D1 by RNA interference experiments prevents transformation and tumor growth in nude mice. The data demonstrate that cyclin D1 is a key target for IRF-1 mediated tumor suppressive effects.
Tumor suppression by IFN regulatory factor-1 is mediated by transcriptional down-regulation of cyclin D1.
Specimen part
View SamplesWe report on abundance and transcript profile characteristics of sperm RNAs. Overall design: Examination of RNA population and distribution in spermatozoa
Stability, delivery and functions of human sperm RNAs at fertilization.
Specimen part, Subject
View Samples