MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. The deletion mutants of this cascade show hypersensitivity to heavy metals like copper or cadmium. However, factors that function downstream of KGB-1 pathway are not well characterized.
The Caenorhabditis elegans JNK signaling pathway activates expression of stress response genes by derepressing the Fos/HDAC repressor complex.
Age
View SamplesRecent studies indicated that the differentiation tendency of pluripotent stem cells (PSCs) was affected by a certain small molecule treatment. We found the combination of small molecules that bringed out the differentiation potentials of PSCs, and defined such state of PSC as CTraS.
Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells.
Specimen part, Subject
View SamplesSmall RNA-seq on MCF10A, HCT116 and HCT116p53-/- cell lines after induction of DNA damage (5 Gy Irradiation). Overall design: Small RNA-seq on MCF10A, HCT116 and HCT116p53-/- at 4 and 24 hours after induction of DNA damage (5 Gy Irradiation), done in duplicate with respective control (0 hour) using illumina Genome Analyzer IIx
p53 shapes genome-wide and cell type-specific changes in microRNA expression during the human DNA damage response.
Cell line, Treatment, Subject, Time
View SamplesTo understand the molecular mechanism underlying inflammatory reaction in vascular system post exposure to ionizing radiation, we carried out microarray analysis in HUVEC exposed with X-ray
Comprehensive and computational analysis of genes in human umbilical vein endothelial cells responsive to X-irradiation.
Specimen part
View SamplesOur previous studies have revealed that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 g/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during late fetal and early postnatal period, leading to imprinting of defects in sexual behaviors at adulthood. However, it remains obscure how the attenuation of pituitary LH links to sexual immaturity. To address this issue, we firstly performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity, using the pituitary and hypothalamus of male pups, at the age of postnatal day (PND)70, born from TCDD-treated dams. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus, because of its role in sexual behaviors suggested so far. The present study strongly suggests that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing steroidogenesis at perinatal stage, and this is the mechanism for the imprinting of defects in sexual behaviors at adulthood.
Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropin-releasing hormone.
No sample metadata fields
View SamplesPaper abstract: The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of isolated these neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits.
Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier.
Specimen part
View SamplesIn previous in vitro study, we reported potential mechanism of cholesterol-lowering effect of Lactobacillus brevis119-2 (119-2) isolated from turnip Tsuda kabu is due to incorporation of cholesterol into 119-2 cell. In this study, we analyzed serum cholesterol and hepatic gene expression of Sprague-Dawley (SD) rat fed diet containing cholesterol with or without 119-2 for 2 weeks, to evaluate the cholesterol-lowering effect of 119-2 in vivo. Serum cholesterol of SD rat fed diet with 119-2 significantly decreased compared to SD rat fed diet without 119-2, and both viable and dead 119-2 indicated the effect. The result of hepatic gene analysis using DNA microarray suggested that potential mechanism of the cholesterol-lowering effect of 119-2 in vivo is inhibiting the activity of 3-hydroxy-3-methylglutaryl-CoA reductase by Insig (insulin induced gene) that is endoplasmic reticulum membrane protein, and catabolizing cholesterol to bile acid by Cyp7a1 (cytochrome P450 a1) that is the rate-limiting enzyme in the synthesis of bile acid from cholesterol. In addition, we concluded feeding 119-2 decreased serum low density lipoprotein (LDL) cholesterol by overexpression of Ldlr (LDL receptor gene). On the other hand, feeding Lactobacillus acidophilus ATCC43121 (ATCC) increased high density lipoprotein (HDL) cholesterol by over expression of Abca1 (ATP binding cassette sub-family A member 1 gene) and Angplt3 (Angiopoietin-like 3). These results suggested that 119-2 decrease the risk of atherosclerosis by serum cholesterol-lowering effect and improving effect of fatty liver and the LH (LDL cholesterol / HDL cholesterol) ratio.
Effect of Lactobacillus brevis 119-2 isolated from Tsuda kabu red turnips on cholesterol levels in cholesterol-administered rats.
Sex, Age, Specimen part
View SamplesDuring seed maturation, the embryo accumulates nutrition storage compounds such as oil and reservve proteins, and acquires dormancy and desiccation tolerance. Arabidopsis transcription factors LEC1, LEC2, FUS3 and ABI3 are known as the master regulators of seed maturation because all these events during the seed maturation are severely affected by the respective mutants. In addition, the lec1, lec2 and fus3 mutants exhibit some heterochronic characteristics, as exemplified by the development of true leaf-like cotyledons during embryogenesis. To characterize these mutants at the whole genome expression level, microarray experiments were performed.
Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants.
Specimen part
View Samplestranscriptomic analysis in rosette leaves of bru1-2 and WT(Col) plants (24-day-old)
Ectopic gene expression and organogenesis in Arabidopsis mutants missing BRU1 required for genome maintenance.
Age, Specimen part
View SamplesAlterations in chromatin modifications, including DNA methylation and histone modification patterns, have been characterized under exposure of several environmental pollutants, including nickel. As with other carcinogenic metals, the mutagenic potential of nickel compounds is low and is not well correlated with its carcinogenic effects. Nickel exposure, however, is associated with alterations in chromatin modifications and related transcriptional programs, suggesting an alternative pathway whereby nickel exposure can lead to disease. To investigate the extent to which nickel exposure disrupts chromatin patterns, we profiled several histone modifications, including H3K4me3, H3K9ac, H3K27me3 and H3K9me2 as well as the insulator binding protein CTCF and the transcriptomes of control BEAS-2B cells and cells treated with nickel for 72 hours. Our results show significant alterations of the repressive histone modification H3K9me2 in nickel-exposed cells with spreading of H3K9me2 into new domains associated with gene silencing. We furthermore show that local regions of active chromatin can protect genes from nickel-induced H3K9me2 spreading. Interestingly, we show that nickel exposure selectively disrupts weaker CTCF sites, leading to spreading of H3K9me2 at these regions. These results have major implications in the understanding of how environmental carcinogens can affect chromatin dynamics and the consequences of chromatin domain disruption in disease progression. Overall design: Treat BEAS-2B cells with NiCl2 for 72 hours and compare histone modification, CTCF binding to control BEAS-2B cells to see how they regulated gene expression by RNA-seq
Epigenetic dysregulation by nickel through repressive chromatin domain disruption.
No sample metadata fields
View Samples