This SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAffymetrix gene expression data of 21 high-grade osteosarcomas located in the extremities.This gene expression profiling was performed in order to evaluate the expression of candidate prognostic and therapeutic targets in high-grade osteosarcoma.
Targeting CDKs with Roscovitine Increases Sensitivity to DNA Damaging Drugs of Human Osteosarcoma Cells.
Age, Specimen part
View SamplesHepatic fibrosis is a wound-healing response to chronic liver injury, which may result in cirrhosis and liver failure. The c-Jun N-terminal kinase-1 (JNK1) gene has been shown to be involved in liver fibrosis. Here, we aimed to investigate the molecular mechanism and identify the cell-type involved in mediating the JNK1-dependent effect on liver fibrogenesis Wild-type (WT), JNK1/ and JNK1hepa (hepatocyte-specific deletion of JNK1) mice were subjected to bile duct ligation (BDL). Additionally, we performed bone marrow transplantations (BMT), isolated primary hepatic stellate cells (HSCs) and studied their activation in vitro. Serum markers of liver damage (liver transaminases, alkaline phosphatase and bilirubin) and liver histology revealed reduced injury in JNK1/ compared to WT and JNK1hepa mice. Hepatocyte cell death and proliferation was reduced in JNK1/ compared to WT and JNK1hepa. Parameters of liver fibrosis such as Sirius Red staining as well as Collagen IA1 and SMA expression were down-regulated in JNK1/ compared to WT and JNK1hepa livers, 4 weeks after BDL. To delineate the essential cell-type, we performed BMT of WT and JNK1-/- into JNK1-/- and WT mice, respectively. BMT experiments excluded bone marrow derived cells from having a major impact on the JNK1-dependent effect on fibrogenesis. Hence, we investigated primary HSCs from JNK1/ livers showing reduced transdifferentiation compared with WT and JNK1hepa-derived HSCs. We conclude that JNK1 in HSCs plays a crucial role in hepatic fibrogenesis and thus represents a promising target for cell-directed treatment options for liver fibrosis.
Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis.
Sex, Age, Specimen part, Treatment, Time
View SamplesAberrant biliary hyperproliferation resulting from lack of differentiating signals favoring the maintenance of an immature and proliferative phenotype by biliary epithelial cells are ultimately responsible for ducto/cystogenesis and intrahepatic cholangiocarcinoma (CCA) formation. Mitogen-activated protein kinase (MAPK) signaling is pivotal for CCA-related tumorigenesis. In particular, targeted inhibition of JNK signaling has shown therapeutic potential. However, the cell-type specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remains largely unknown. Here, we aimed to investigate the relevance of JNK function in hepatocytes in experimental carcinogenesis. JNK signaling in hepatocytes was inhibited by crossing AlbCre-JNK1LoxP/LoxP mice with JNK2-deficient mice to generate Jnk1LoxP/LoxP/Jnk2−/− (JNKΔhepa) mice. JNKΔhepa mice were further interbred with hepatocyte-specific Nemo-knockout mice (NEMOΔhepa), a model of chronic liver inflammation and spontaneous hepatocarcinogenesis, to generate NEMO/JNKΔhepa mice. The impact of JNK deletion on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development in NEMOΔhepa mice was determined. Moreover, regulation of essential genes was assessed by RT-PCR, immunoblottings and immunostains. Additionally, JNK2 inhibition, specifically in hepatocytes of NEMOΔhepa/JNK1Δhepa mice, was performed using siRNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of JNK1 and JNK2 in hepatocytes diminished hepatocarcinogenesis in both the DEN model of hepatocarcinogenesis and in NEMOΔhepa mice, but, in contrast, caused massive proliferation of the biliary ducts. Indeed, JNK deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression, but reduced hepatocarcinogenesis. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the IL-6/Stat3 pathway in addition to EGFR-Raf-MEK-ERK cascade. The functional relevance was tested by administering lapatinib - a dual tyrosine kinase inhibitor (TKI) of ErbB2 and EGFR signaling - to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases and effectively blocked EGFR-Raf-MEK-ERK signaling. Our study defines a novel function of JNK in cell fate as well as hepatocarcinogenesis and opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.
Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma.
Age, Specimen part, Treatment
View SamplesChronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKK/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOhepa and Jnk2-/-/NEMOhepa mice by crossing NEMOhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOhepa mice. Jnk2-/-/NEMOhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.
Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury.
Sex, Age, Specimen part
View SamplesWe observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.
WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
Treatment, Subject
View SamplesInjuries to the anterior cruciate ligament (ACL) often result in post-traumatic osteoarthritis (PTOA). PTOA accounts for ~12% of all osteoarthritis (OA) cases, yet the mechanisms contributing to OA after joint injury are not well understood. To better understand the molecular mechanisms behind PTOA development following ACL injury, we profiled ACL injury-induced gene expression changes in knee joints of three mouse strains with varying susceptibility to PTOA: STR/ort (highly susceptible), C57BL/6 (moderately susceptible) and super-healer MRL/MpJ (not susceptible) and identified genes differentially expressed between these strains at 0-day [before injury], 1-day, 1-week, and 2-weeks post-injury. This study highlights many new potential therapeutic targets and OA biomarkers. Overall design: Comparative transcriptomics to understand the molecular changes associated with early stages of PTOA development in STR/ort, C57BL/6 and MRL/MpJ mice and to identify genes that contribute to increased OA susceptibility in STR/ort and resistance to PTOA in MRL/MpJ.
Comparative Transcriptomics Identifies Novel Genes and Pathways Involved in Post-Traumatic Osteoarthritis Development and Progression.
Age, Specimen part, Cell line, Treatment, Subject
View Samples