Keeping imbibed seeds at low temperatures for a certain period, so called seed vernalization (SV) treatment, promotes seed germination and subsequent flowering in various plants. Vernalization-promoting flowering requires GSH. However, the expression patterns analyzed by GeneChip arrays showed that increased GSH biosynthesis partially mimics SV treatment in Arabidopsis thaliana. SV treatment (keeping imbibed seeds at 4C for 24 h) induced a specific pattern of gene expression and promoted subsequent flowering in wild-type plants. A similar pattern was observed at 22C in transgenic plants (35S-GSH1 plants) overexpressing the -glutamylcysteine synthetase gene GSH1, coding an enzyme limiting GSH biosynthesis, under the control of the cauliflower mosaic virus 35S promoter. This pattern was strengthened at 4C but flowering was less responsive to SV treatment. There was a difference in the transcript behaviour of the flowering repressor FLC between wild-type and 35S-GSH1 plants. Unlike other genes responsive to SV treatment, SV-dependent decrease in FLC in wild-type plants was reversed in 35S-GSH1 plants. SV treatment increased GSSG level in wild-type seeds, whereas GSSG level was high in 35S-GSH1 plants, even at a non-vernalizing temperature. Taking into consideration that low temperatures stimulate GSH biosynthesis and bring about oxidative stress, GSSG is considered to trigger low temperature response, but enhanced GSH synthesis was not enough for mimicking SV treatment. To complete it, it essentially required the cellular redox retransition from the oxidized to the reduced state that is observed after the seed vernalization treatment.
Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis.
Specimen part
View SamplesWe observed that mutations in CBP60a, CML46, CML47 and WRKY70 enhanced plant resistance to Pma likely through different mechanisms. To investigate their contributions to enhanced resistance at the transcriptome level, we designed this experiment to measure their response to Pma using the SMART-3Seq method. Overall design: Mature leaves of Arabidopsis plants of seven different genotypes were infiltrated with mock or Pma. Samples were collected 24 hours after treatment. Each experiment contains one sample consisted of two leaves for each genotype-treatment combination. In total three independent experiments were conducted.
WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1.
Treatment, Subject
View SamplesDirect conversion of somatic cells into neural stem cells (NSCs) by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. Additionally, the single seeded induced NSCs were able to form NSC colonies with efficiency comparable to control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating and attaining neural phenotypes after transplantation into neonatal mouse- and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts. Overall design: RNA-Seq of 3 replicates each of iNSC, WT-NSC, and HNF
Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of brown adipose tissue from Yin Yang 1 (YY1) brown fat specific knockout mice fed a high fat diet for 3 months. YY1 deficiency in brown adipose tissue leads to strong thermogenic deficiency. The goal was to identify the genes controlled by YY1 responsible of brown fat defective function.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of visceral white adipose tissue (EWAT) from Yin Yang 1 adipose-specific knockout mice exposed to cold (4C) for 4 days.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis of subcutaneous adipose tissue (IWAT) from Yin Yang 1 brown fat specific knockout mice fed a high fat diet for 2 weeks. The goal was to identify a gene signature of IWAT browning in YY1 mutant mice.
Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.
Age, Specimen part, Treatment
View SamplesAnalysis to find splicing variants that are differentially expressed in a highly metastatic stomach cancer cell line, MKN45P, versus its parental cell line, MKN45
Identification of a novel protein isoform derived from cancer-related splicing variants using combined analysis of transcriptome and proteome.
Specimen part, Cell line
View SamplesInjuries to the anterior cruciate ligament (ACL) often result in post-traumatic osteoarthritis (PTOA). PTOA accounts for ~12% of all osteoarthritis (OA) cases, yet the mechanisms contributing to OA after joint injury are not well understood. To better understand the molecular mechanisms behind PTOA development following ACL injury, we profiled ACL injury-induced gene expression changes in knee joints of three mouse strains with varying susceptibility to PTOA: STR/ort (highly susceptible), C57BL/6 (moderately susceptible) and super-healer MRL/MpJ (not susceptible) and identified genes differentially expressed between these strains at 0-day [before injury], 1-day, 1-week, and 2-weeks post-injury. This study highlights many new potential therapeutic targets and OA biomarkers. Overall design: Comparative transcriptomics to understand the molecular changes associated with early stages of PTOA development in STR/ort, C57BL/6 and MRL/MpJ mice and to identify genes that contribute to increased OA susceptibility in STR/ort and resistance to PTOA in MRL/MpJ.
Comparative Transcriptomics Identifies Novel Genes and Pathways Involved in Post-Traumatic Osteoarthritis Development and Progression.
Age, Specimen part, Cell line, Treatment, Subject
View SamplesErbB receptor ligands, epidermal growth factor (EGF) and heregulin (HRG), induce dose-dependent transient and sustained intracellular signaling, proliferation and differentiation of MCF-7 breast cancer cells, respectively. In an effort to delineate the ligand-specific cell determination mechanism, we investigated time-course gene expressions induced by EGF and HRG that induce distinct cellular phenotypes in MCF-7 cells. To analyze the effects of ligand dosage and time for the gene expression independently, we developed a statistical method for decomposing the expression profiles into the two effects. Our results indicated that signal transduction pathways devotedly convey quantitative properties of the dose-dependent activation of ErbB receptor to early transcription. The results also implied that moderate changes in the expression levels of numbers of genes, not the predominant regulation of a few specific genes, might cooperatively work at the early stage of the transcription for determining the cell fate. However, the EGF- and HRG-induced distinct signal durations resulted in the ligand-oriented biphasic induction of proteins after 20 min. The selected gene list and HRG-induced prolonged signaling suggested that transcriptional feedback to the intracellular signaling results in a graded to biphasic response in the cell determination process, and that each ErbB receptor is inextricably responsible for the control of amplitude and duration of cellular biochemical reactions.
Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation.
Cell line
View Samples