Repro9 in an allele of Mybl1 (A-Myb) transcription factor obtained in ENU screen to identify alleles causing mouse infertility. Repro9/repro9 mutant males are infertile due to meiotic arrest at pachytene stage. Mutants show wide range of abnormalities including inefficient chromosome synapsis, sex body formation and progression through meiotic cycle. Females are unaffected. To determine genes transcriptionally regulated by MYBL1 we analyzed gene expression profiles of wild type and repro9/repro9 mutant testis at 14 and 17 days postpartum. Analysis revealed many misregulated genes, in majority downregulated, at day 14 pp and even more at day 17 pp, probably due to secondary effects of meiotic arrest. Significantly misregulated genes were characterized by Gene Ontology. Comparative gene expression analysis uncovered potential targets of MYBL1 regulation that play roles in regulation of transcription, cell cycle, apoptosis, protein phosphorylation and ubiquitination, chromosome organization and others.
A-MYB (MYBL1) transcription factor is a master regulator of male meiosis.
Specimen part
View SamplesIn order to identify genes with different overall transcript levels or differential exon levels (alternative processing) between the groups Control and Tat-SF1KD, we studied 11 hybridizations on the HumanExon10ST array using mixed model analysis of variance. 526 genes with significant transcript level differences between the groups and 1397 genes with significant differential exon levels were found, including 99 genes with both transcript and exon level differences (p<0.01).
Identification of Tat-SF1 cellular targets by exon array analysis reveals dual roles in transcription and splicing.
Cell line
View SamplesExpression data from Kc167 cells under normal conditions. Used to assess expression levels of genes with ORC bound at promoter.
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.
Cell line
View SamplesIn a fluorescence polarization screen for MYC-MAX interaction, we have identified a novel small molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-overexpressing human cancer cells. Overall design: 4 treatment groups analyzed in triplicate: no treatment(control), 20uM KJ-Pyr-9, 0.1ug/mL doxycycline and KJ-Pyr-9 in combination with doxycycline
Inhibitor of MYC identified in a Kröhnke pyridine library.
No sample metadata fields
View SamplesVolatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains.
Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function.
Age, Specimen part, Time
View SamplesCaryopses of barley (Hordeum vulgare), like all other cereal seeds, are complex sink organs optimized for storage starch accumulation and embryo development. Their development from early stages after pollination to late stages of seed ripening has been studied in great detail. However, information on the caryopses diurnal adaptation to changes in light, temperature and alterations in phloem-supplied carbon and nitrogen remained unknown.
Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses.
Age, Specimen part
View SamplesHigh temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening.
Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesThe Rad23/Rad4 protein complex plays a major role in DNA damage recognition during nucleotide excision repair (NER) in yeast. We recently showed that two distinct pathways contribute to efficient NER in yeast. The first operates independently of de novo protein synthesis and requires a nonproteolytic function of the 19S regulatory complex of the 26S proteasome and Rad23. The second pathway requires de novo protein synthesis, and relies on the activity of a newly identified Rad7-containing E3 ubiquitin ligase that ubiquitinates Rad4 in response to UV. Surprisingly, we found that cells deleted of either Rad23 or Rad4 caused reduced Rad4 and Rad23 mRNA levels respectively. We considered the possibility of an unexpected role of Rad23 and Rad4 in regulating the expression of genes involved in the transcriptional response to DNA damage. Gene expression profiling has suggested that Rad23 and Rad4 may function as a complex to affect transcription of a small subset of genes in response to UV damage. To determine how Rad4 and Rad23 contribute to the regulation of these genes, we have examined the occupancy of Rad4/Rad23 in their promoter regions by chromatin immunoprecipitation (ChIP), both in the presence and absence of UV damage. Our preliminary ChIP data suggests that the Rad4/Rad23 complex regulates a set of genes in response to UV light. We also proposed that the transcriptional regulatory activity of the Rad4-Rad23 complex required Rad4 ubiquitination. These arrays test this theory using the psocs mutant strain, which is unable to facilitate Rad4 ubiquitination after UV irradiation.
UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools.
Time
View Samples