We performed RNA-Seq analyses on 15 human fetal samples at 53-137 days of development, 9 female and 5 male, and identified the transcriptional changes during the transition of human cKIT+ primordial germ cells (PGCs), the precursors of gametes, to the generation of Advanced Germline Cells. Comparing the transcriptional profile of PGCs to that of H1 and UCLA1 hESCs identifies differences between the two cell types and pinpoints molecules that can be used in the development of in vitro germ cell differentiation protocols starting from human pluripotent stem cells. Overall design: RNA-Seq of cKIT+ cells analyzed from 6 biological samples for testes and 9 samples for ovaries from 53-137 days. 2 biological replicates of TRA-1-81+ cells sorted from H1 and UCLA1 hESCs. WGBS of cKIT+ cells analyzed from 4 biological samples of ovaries and 1 biological sample of testes at 57-137 days of development.
DNA Demethylation Dynamics in the Human Prenatal Germline.
No sample metadata fields
View SamplesPrimordial germ cells (PGCs) are fate restricted to differentiate into gametes in vivo. However when removed from their embryonic niche PGCs undergo reversion to generate pluripotent embryonic germ cells (EGCs) in vitro. One of the major differences between EGCs and embryonic stem cells (ESCs) involves variable methylation at imprinting control centers (ICCs), a phenomenon that is poorly understood. In the current study we show that reverting PGCs to EGCs involves ICC methylation erasure, which remain stably hypomethylated at Snrpn, Igf2r and Kcnqot1. In contrast, the H19/Igf2 ICC undergoes almost complete de novo remethylation. Using the same approach for PGCs differentiated in vitro from ESCs we show that the Snrpn ICC is erased however the hypomethylated state is highly unstable. We also discovered that when the H19/Igf2 ICC is abnormally hypermethylated in ESCs, ICC methylation is not erased with differentiation into PGCs. This highlights the importance of not only launching germline differentiation with correctly methylated ESC lines but also the need to better stabilize the hypomethylated state in the in vitro derivatives following ICC erasure. Overall design: RNA seq of E9.5 PGCs, iPGCs, PGCLCs and EGCs using small cell numbers from start. N=2 biological replicates in 2 technical sequencing replicates.
PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation.
No sample metadata fields
View SamplesPGCs undergo two distinct stages of demethylation before reaching a hypomethylated ground state at E13.5. Stage 1 occurs between E7.25- E9.5 in which PGCs experience a global loss of cytosine methylation. However, discreet loci escape this global loss of methylation and between E10.5-E13.5, stage 2 of demethylation takes place. In this stage these loci are targeted by Tet1 and Tet2 leading to the loss of the remaining methylation and resulting in the epigenetic ground state. Our data shows that Dnmt1 is responsible for maintaining the methylation of loci that escape stage 1 demethylation, and that it functions in a UHRF1 independent manner. Our data further demonstrates that when these loci lose methylation prior to stage 2 it results in early activation of the meiotic program, which leads to precocious differentiation of the germ line resulting in a decreased pool of PGCs in the embryo and subsequent infertility in adult mice. Overall design: Examination of transcription of Mouse PGCs
Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.
Cell line, Treatment
View SamplesIn this report, we describe a successful protocol for isolating and expression-profiling live fluorescent- protein-labelled neurons from zebrafish embryos. As a proof-of-principle for this method, we FAC-sorted and RNA-profiled GFP-labelled spinal CiA interneurons and compared the expression profile of these cells to those of post-mitotic spinal neurons in general and to all trunk cells. We show that RNA of sufficient quality and quantity to uncover both expected and novel transcription profiles via Affymetrix microarray analysis can be extracted from 5,700 to 20,000 FAC-sorted cells. As part of this study, we also further confirm the genetic homology of mammalian and zebrafish V1 interneurons, by demonstrating that zebrafish V1 cells (CiAs) express genes that encode for the transcription factors Lhx1a and Lhx5. This protocol for dissociating, sorting and RNA-profiling neurons from organogenesis-stage zebrafish embryos should also be applicable to other developing organs and tissues and potentially other model organisms.
RNA profiling of FAC-sorted neurons from the developing zebrafish spinal cord.
Age, Specimen part
View SamplesThe inflammatory response initiated by microbial products signaling through Toll-like receptors (TLRs) of the innate immune system is essential for host defense against infection. Because inflammation can be harmful to host tissues, the innate response is highly regulated. Negative regulation of TLR4, the receptor for bacterial lipopolysaccharide (LPS), results in LPS tolerance, defined as hyporesponsiveness to repeated stimulation with LPS. LPS tolerance is thought to protect the host from excessive inflammation by turning off TLR4 signal, which then shuts down TLR-induced genes. However, TLR signaling induces hundreds of genes with very different functions. We reasoned that genes with different functions should have different requirements for regulation. Specifically, genes encoding proinflammatory mediators should be transiently inactivated to limit tissue damage, while genes encoding antimicrobial effectors, which directly target pathogens, should remain inducible in tolerant cells to protect the host from infection. Using an in vitro system of LPS tolerance in macrophages, here we show that TLR-induced genes may indeed be divided into two distinct categories based on their functions and regulatory requirements. Further, we show these distinct groups are regulated by gene-specific, and not signal-specific mechanisms.
Gene-specific control of inflammation by TLR-induced chromatin modifications.
Specimen part
View SamplesEarly innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing
Development and differentiation of early innate lymphoid progenitors.
Specimen part, Cell line, Subject
View SamplesMembrane estrogen receptor (ER) alpha stimulates AMP kinase to suppress SREBP1 processing and lipids in liver
Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling.
Specimen part
View SamplesThe recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (1) it interrogates the entire mRNA transcript, and (2) it uses cDNA targets. To assess the impact of these differences on array performance, we performed series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both cRNA and cDNA targets were probed on the HG-U133 Plus 2.0 array. The results show that the overall reproducibility is best using the Gene 1.0 ST array. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. The Gene 1.0 ST is most concordant with the HG-U133 array hybridized with cDNA targets, thus showing the impact of the target type. Agreements are better between platforms with designs which choose probes from the 3' end of the gene. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Affymetrix Whole-Transcript Human Gene 1.0 ST array is highly concordant with standard 3' expression arrays.
No sample metadata fields
View Samples