The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) upon glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions.
Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.
Specimen part, Subject
View SamplesWe report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View SamplesMasitinib is a tyrosine kinase inhibitor of c-Kit, PDGFR and , and to some extent Lyn of the Src kinase family. We evaluated the therapeutic potential of masitinib in vitro on human pancreatic tumour cell lines and in vivo in a mouse model of human pancreatic cancer.
Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model.
Specimen part, Cell line, Treatment
View SamplesBackground & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.
UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.
Specimen part, Cell line
View SamplesMost adult patients have a D816V mutation in phosphotransferase domain (PTD), we have described that half of the children carry mutations in extracellular domain (ECD). KIT-ECD versus IT-PTD-mutants were introduced into rodent Ba/F3, EML, Rat2 and human TF1 cells to investigate their biological effect. ECD- and PTD-mutants also displayed distinct whole-genome transcriptional profiles in EML cells. We observed differences in their signaling properties: they both activated STAT pathways, whereas AKT pathway was only activated by ECD-mutants. Consistently, AKT inhibitor suppressed ECD-mutant-dependent proliferation, clonogenicity and erythroid differentiation. Expression of myristoylated AKT restored erythroid differentiation in EMLPTD cells, suggesting the differential role of AKT in those mutants. Overall, our study implied different pathogenesis of pediatric versus adult mastocytosis, which might explain their diverse phenotypes.
Pediatric mastocytosis-associated KIT extracellular domain mutations exhibit different functional and signaling properties compared with KIT-phosphotransferase domain mutations.
Cell line, Time
View SamplesTranscriptional profiling for global characterization of gene expression alterations that resulted from treatment of melanoma cells with siRNA specifically targeting NRASQ61R
Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro.
No sample metadata fields
View SamplesOxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Subject
View SamplesDifferent human adipose tissue depots may have functional differences. Subcutaneous human adipose tissue has been extensively studied, but less is known about other depots. Perithyroid (PT) adipose tissue contains not only white adipocytes but also brown adipocytes. The aim of this study was to compare the expression of brown adipocyte containing perithyroid adipose tissue with s.c. adipose tissue.role in the development of obesity. Expression profiling of adipose tissue may give insights into mechanisms contributing to obesity and obesity-related disorders.
Gene expression in human brown adipose tissue.
Sex, Specimen part
View SamplesA biobank collection of carotid plaque samples taken from patients undergoing endarterectomy operations.
Prediction of ischemic events on the basis of transcriptomic and genomic profiling in patients undergoing carotid endarterectomy.
Specimen part, Disease, Subject
View SamplesPentoxifylline attenuated hypertrophic scars by influencing the cell cycles Overall design: mRNA profiles of control hypertrophic scar fibroblasts and pentoxifylline treated cells were generated by deep sequencing, in triplicate, using Ion Proton.
The Akt/FoxO/p27<sup>Kip1</sup> axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars.
Specimen part, Treatment, Subject
View Samples