In leukemias and other malignancies of the bone marrow, little is known about the fate of fibroblasts and resident macrophages after normal hematopoietic cells are replaced by neoplastic cells. In the present investigation we used two-stage long-term bone marrow cultures to detect functional stromal cell abnormalities in acute myeloid leukemia, myelodysplastic syndromes and multiple myeloma. While fibroblasts from multiple myeloma and macrophages from multiple myeloma and myelodysplastic syndromes were functionally indistinguishable from the respective cell types from normal bone marrow, fibroblasts from patients with acute myeloid leukemia or myelodysplastic syndromes possessed a significantly lower ability to support hematopoiesis originating from co-cultured normal CD34-positive cells than fibroblasts from healthy marrow. Conversely, macrophages from acute myeloid leukemia marrow significantly enhanced the production of blood cells compared with control macrophages. Aberrant function in fibroblasts and macrophages was associated with consistent changes in the expression of genes whose products are involved in hematopoietic stem cell control, such as cytokines and regulators of the Wnt and Notch signalling pathways.
Functional abnormalities and changes in gene expression in fibroblasts and macrophages from the bone marrow of patients with acute myeloid leukemia.
Sex, Disease, Disease stage, Subject
View SamplesWe report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View SamplesBackground & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.
UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.
Specimen part, Cell line
View SamplesOxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Subject
View SamplesPentoxifylline attenuated hypertrophic scars by influencing the cell cycles Overall design: mRNA profiles of control hypertrophic scar fibroblasts and pentoxifylline treated cells were generated by deep sequencing, in triplicate, using Ion Proton.
The Akt/FoxO/p27<sup>Kip1</sup> axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars.
Specimen part, Treatment, Subject
View SamplesThe response to the presence of the ncpBVDV-infected PI or TI fetus is expected to provide information on the impact of the PI fetus on the immune response of the dam
Persistent fetal infection with bovine viral diarrhea virus differentially affects maternal blood cell signal transduction pathways.
No sample metadata fields
View SamplesComparison of Chronic Lymphocytic Leukemia patients expressing high or low levels of ZAP70 mRNA: prognostic factors and interaction with the microenvironment.
Gene expression profiling reveals differences in microenvironment interaction between patients with chronic lymphocytic leukemia expressing high versus low ZAP70 mRNA.
Sex, Age
View SamplesBoar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from -3.39 to 2.96 and -7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of -0.27 in liver and three modules with correlations of 0.31, -0.44 and -0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included “Ribosome”, “Protein export” and “Oxidative phosphorylation” in liver and “Steroid hormone biosynthesis” and “Gap junction” in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs. Overall design: Total RNA was extracted from liver and testis of 48 Danish Landrace pigs with low- medium and high genetic merit of boar taint and sequenced by Illumina HiSeq 2500.
Systems genomics study reveals expression quantitative trait loci, regulator genes and pathways associated with boar taint in pigs.
Specimen part, Subject
View SamplesSelected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72, and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered -glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas bglu42 was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.
β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots.
Specimen part
View SamplesBackground & Aims: Genome-wide gene expression (GWGE) profiles of mucosal colonic biopsies have suggested the existence of a continuous inflammatory state in quiescent ulcerative colitis (UC). The aim of this study was to use DNA microarray-based GWGE profiling of mucosal colonic biopsies and isolated colonocytes from UC patients and controls in order to identify the cell types responsible for the continuous inflammatory state. Methods: Adjacent mucosal colonic biopsies were obtained endoscopically from the descending colon in patients with active UC (n=8), quiescent UC (n=9), and with irritable bowel syndrome (controls, n=10). After isolation of colonocytes and subsequent extraction of total RNA, GWGE data were acquired using Human Genome U133 Plus 2.0 GeneChip Array (Affymetrix, Santa Clara, CA). Data analysis was carried out by principal component analysis and projection to latent structure-discriminant analysis using the SIMCA-P11 software (Umetrics, Ume, Sweden). Results: A clear separation between active UC, quiescent UC and control biopsies were found, whereas the model for the colonocytes was unable to distinguish between quiescent UC and controls. The differentiation between quiescent UC and control biopsies was governed by unique profiles containing gene expressions with significant fold changes. These primarily belonged to the family of homeostatic chemokines revealing a plausible explanation to the abnormal regulated innate immune response seen in patients with UC. Conclusion: This study has demonstrated the presence of a continuous inflammatory state in quiescent UC, which seems to reflect an altered gene expression profile of lamina propria cells.
Genome-wide gene expression analysis of mucosal colonic biopsies and isolated colonocytes suggests a continuous inflammatory state in the lamina propria of patients with quiescent ulcerative colitis.
No sample metadata fields
View Samples