MCF7 cells were treated with DMSO or 100 nM Dioxin for 16 hr. Gene expression changes were quantified by microarray analyses.
A proposed mechanism for the protective effect of dioxin against breast cancer.
No sample metadata fields
View SamplesWe compared molecular characteristics of primary and recurrent pediatric ependymoma to identify sub-group specific differences.
Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma.
Specimen part
View SamplesIntroduction: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95% at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in exceptionally poor quality of life for survivors. Identification of an effective pharmacological therapy would drastically decrease morbidity and improve long term outcomes for children with ACP.
Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.
Specimen part, Disease, Disease stage
View SamplesGene expression data from the Nurses' Health Study
PAM50 Molecular Intrinsic Subtypes in the Nurses' Health Study Cohorts.
Disease stage, Treatment
View SamplesWe report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View SamplesBackground & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.
UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.
Specimen part, Cell line
View SamplesWe report that colon adenomas from ApcMin/+ mice not only exhibit similarities in gene expression profile to colon adenomas from azoxymethane / dextran sulfate sodium-treated mice (with activating Ctnnb1 mutations) due to the activation of canonical WNT signaling, but also unique transcriptional changes in the pathways regulating cell cycle progression / proliferation, chromosome segregation / cytoskeletal organization and apoptosis. Subsequent experiments characterized changes in gene expression unique to colon adenomas from ApcMin/+ mice including increases in the H2afv, Map6 and Nsmf transcripts. Overall design: Examination of gene expression profiles in 2 different colon adenoma types with activated canonical WNT signaling, relative to their respective non-adenoma controls
Mutational Mechanisms That Activate Wnt Signaling and Predict Outcomes in Colorectal Cancer Patients.
Cell line, Treatment, Subject
View SamplesWe have established that BMP6 is an important endogenous regulator of human osteoblast differentiation. Our preliminary experiment showed that 8 hour BMP6 treatment induced early osteoblast markers in hMSC.
GAGE: generally applicable gene set enrichment for pathway analysis.
No sample metadata fields
View SamplesGene expression data were collected by RNA-seq from HCT-116 cells in the presence or absence of siRNA targeting APC and 1,376 transcripts changed in expression following APC silencing were identified relative to scrambled siRNA-transfected and untreated controls. Overall design: Examination of gene expression under 3 different transfection conditions
Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1.
Specimen part, Cell line, Treatment, Subject
View SamplesOxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Subject
View Samples