We report the effect of DKK1 treatment during culture on the length and transcriptome of embryos on day 15 of development, supporting the notion that changes early in development affect later stages of development. Overall design: Bovine embryos were produced in vitro and exposed to either 0 or 100 ng/ml DKK1 from day 5 to 7 of culture. Embryos were transferred on day 7 and recovered on day 15 for evaluation of length and transciptome
Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation.
Treatment, Subject
View SamplesBackground & Aims: Ursodeoxycholic acid (UDCA) attenuates chemical and colitis-induced colon carcinogenesis in animal models. We investigated its mechanism of action on normal intestinal cells, in which carcinogenesis- or inflammation-related alterations do not interfere with the result. Methods: Alterations of gene expression were identified in Affymetrix arrays in isolated colon epithelium of mice fed with a diet containing 0.4% UDCA and were confirmed in the normal rat intestinal cell line IEC-6 by RT-PCR. The effect of the insulin receptor substrate 1 (Irs-1) expression and of ERK phosphorylation on proliferation was investigated in vitro by flow cytometry, western blotting, siRNA-mediated gene suppression or by pharmacological inhibition of the kinase activity. The ERK1-effect on Irs-1 transcription was tested in a reporter system. Results: UDCA-treatment in vivo suppressed potential pro-proliferatory genes including Irs-1 and reduced cell proliferation by more than 30%. In vitro it neutralised the proliferatory signals of IGF-1 and EGF and slowed down the cell cycle. Irs-1 transcription was suppressed due to high ERK1 activation. Both Irs-1 suppression and the persistent high ERK activation inhibited proliferation. Conversely, the decrease of phosphorylation of ERK1 (but not ERK2) or of its expression partially abrogated the inhibitory effects of UDCA. Conclusions: UDCA inhibits proliferation of intestinal epithelial cells by acting upon IGF-1 and EGF pathways and targeting ERK1 and, consequently, Irs-1. The inhibition of these pathways adds a new dimension to the physiological and therapeutic action of UDCA and, since both pathways are activated in inflammation and cancer, suggests new applications of UDCA in chemoprevention and chemotherapy.
UDCA slows down intestinal cell proliferation by inducing high and sustained ERK phosphorylation.
Specimen part, Cell line
View SamplesSpontaneous neural repair from endogenous neural stem cells (NSCs) occurs in response to central nervous system (CNS) injuries or diseases to only a limited extent from endogenous NSCs niches. Uncovering the mechanisms that control neural repair and can be further manipulated to promote towards oligodendrocyte progenitors cells (OPCs) and myelinating oligodendrocytes is a major objective.
Prickle1 as positive regulator of oligodendrocyte differentiation.
Sex, Age, Specimen part, Time
View SamplesCoffinLowry Syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes Rsk2, a serine/threonine kinase involved in spatial memory. We analyzed hippocampal gene expression profiles in Rsk2-KO mice to identify changes in molecular pathways.
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin-Lowry syndrome.
No sample metadata fields
View SamplesOxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Subject
View SamplesMale Wistar rats weighing 90-120 g were acclimatized for one week and fed standard laboratory chow, at which time the animals were divided into two groups. Animals were then pair-fed for 8 weeks a regular laboratory chow and water ad libitum or Lieber-DeCarli diet (36% calories from ethanol). Control animals received the iso-caloric amount of dextrose to replace ethanol. After 8 weeks of differential feeding rats were euthanized, the pancreas immediately dissected and stored at -80?C until RNA isolation. RNA expression was analyzed using Affymetrix RAE230A gene chips
Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury.
No sample metadata fields
View SamplesPentoxifylline attenuated hypertrophic scars by influencing the cell cycles Overall design: mRNA profiles of control hypertrophic scar fibroblasts and pentoxifylline treated cells were generated by deep sequencing, in triplicate, using Ion Proton.
The Akt/FoxO/p27<sup>Kip1</sup> axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars.
Specimen part, Treatment, Subject
View SamplesThe RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked monogenic disease associating severe learning deficit andassociated to typical facial and digital abnormalities and skeletal changes. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.
RSK2 is a modulator of craniofacial development.
No sample metadata fields
View SamplesThe response to the presence of the ncpBVDV-infected PI or TI fetus is expected to provide information on the impact of the PI fetus on the immune response of the dam
Persistent fetal infection with bovine viral diarrhea virus differentially affects maternal blood cell signal transduction pathways.
No sample metadata fields
View SamplesSUMMARY: This article presents a predictive molecular signature that marks the early onset of fibrosis in a translational nonalcoholic steatohepatitis mouse model. Overlap of genes and processes with human nonalcoholic steatohepatitis and a list of top candidate biomarkers for early fibrosis are described. BACKGROUND & AIMS: The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. METHODS: A time-course study in low-density lipoprotein–receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. RESULTS: High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. CONCLUSIONS: An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames. Keywords: Systems Biology; Metabolic Syndrome; Liver Disease; Diagnosis. Overall design: In total 9 treatment groups: 5 Control groups (chow = standard diet; t=0, 6, 12, 18, 24 weeks), 4 Treatment groups (HFD = High Fat diet; 6, 12, 18, 24 weeks).
Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model.
Specimen part, Subject
View Samples