We used microarrays to measure the expression levels of genes in irradiated immortalized B cells, lymphoblastoid cells, from members of Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees. Data were collected for cells at baseline and 2 hours and 6 hours after exposure to 10 Gy of ionizing radiation (IR).
Genetic variation in radiation-induced cell death.
Specimen part, Treatment
View SamplesIn this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.
Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.
No sample metadata fields
View SamplesIn this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.
Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.
No sample metadata fields
View SamplesIn this study we compared the effects of ALK inhibitor on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from a patient with Anaplastic Large Cell Lymphoma. we used microarrays to map the genome-wide gene expression patterns in ALK+TCL cells in response to ALK inhibition.
Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming.
Cell line
View SamplesLigand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the global gene expression profile in primary aortic endothelial cells in response to endothelial cell specific expression of a dominant negative isoform of PPAR gamma (V290M).
Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet.
No sample metadata fields
View SamplesPurpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived brain transcriptome profiling (RNA-seq) in neuropathic region specific Gaucher mouse brain compared with WT and Isofagamine treated mice of the same age and background and secondly to identify the DEmiRNA associated with the DEmRNA before and after treatment This will give us some insights to see if miRNA is also involved in the the regulation of the expression of the genes involved in the disease process before and after treatment. Methods: 42-45 days old 4L;C*, wild-type (WT) and Isofagamine treated 4L;C* mouse brain were generated by deep sequencing, in triplicate, using IlluminaHiseq. The sequence reads that passed quality filters were analyzed at the gene level with two methods: Burrows–Wheeler Aligner (BWA) followed and TopHat followed by DESeq. qRT–PCR validation was performed using TaqMan and SYBR Green assays Overall design: Regional brain mRNA profiles of ~42 -days old wild type (WT) and 4L;C* an d Isofagamine treated mice were generated by deep sequencing, in triplicate, using IlluminaHi Seq.
Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer.
No sample metadata fields
View SamplesLigand-mediated activation of the nuclear hormone receptor PPAR gamma lowers blood pressure and improves glucose tolerance in humans. Two naturally occurring mutations (P467L, V290M) in the ligand binding domain of PPAR gamma have been described in humans that lead to severe insulin resistance and hypertension. Experimental evidence suggests that these mutant versions of PPAR gamma act in a dominant negative fashion. To better understand the molecular mechanisms underlying PPAR gamma action in the vasculature, we determined the gene expression patterns in mouse aorta in response to activation or interference with the PPAR gamma signaling pathway.
Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta.
No sample metadata fields
View SamplesPioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine and colon. Here we derived organoids from mouse gallbladder tissue (gallbladder organoids), from mouse liver (including the extrahepatic biliary ducts and gallbladder; liver organoids) and from mouse small intestine tissue (intestinal organoids). RNA was prepared from these organoids and used to assay expression of 21,258 genes using Affymetrix gene expression arrays. RNA was also prepared from mouse gallbladder, liver and small intestine tissues and used to assay gene expression in these tissues. Finally, gallbladder organoids were induced to differentiate by removing R-spondin 1 and noggin from the culture media and subjected to gene expression array analysis.
R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders.
Specimen part
View SamplesCD4+ T-cells isolated from three normal individuals and GM6990 cell lines (three biological replicates) are compared
DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
No sample metadata fields
View SamplesTranscriptome analysis of human peripheral blood T cells
Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
Sex, Specimen part, Time
View Samples