Despite timely and successful surgery, 32% of patients with bilateral and 10% with unilateral cryptorchidism will develop azoospermia. Cryptorchid boys at risk of azoospermia display a typical testicular histology of impaired mini-puberty at the time of the orchidopexy.
Testicular gene expression in cryptorchid boys at risk of azoospermia.
Specimen part
View SamplesThe aim of the experiment is to determine sugar and ABA responsive gene expression in Arabidopsis.
Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.
Age, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View SamplesDrug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.
Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.
Cell line, Treatment
View SamplesDrug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.
Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.
Sex, Age, Specimen part, Treatment
View SamplesDrug-induced liver injury (DILI) is an important clinical problem. Here we used a genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor (TNF) to cause cell death of liver HepG2 cells. Transcriptomics of the cell injury stress response pathways initiated by two hepatoxicants, diclofenac and carbamazepine, revealed the endoplasmic reticulum (ER) stress/translational initiation signaling and Nrf2 antioxidant signaling as two major affected pathways, which was similar to that observed for the majority of ~80 DILI compounds in primary human hepatocytes. The ER stress was primarily related to PERK and ATF4 activation and subsequent expression of CHOP, which was all independent of TNF signaling. Identical ATF4 dependent transcriptional programs were observed in primary human hepatocytes as well as primary precision cut human liver slices. Targeted RNA interference studies revealed that while ER stress signaling through IRE1 and ATF6 acted cytoprotective, activation of the ER stress protein kinase PERK and subsequent expression of CHOP was pivotal for the onset of drug/TNF-induced apoptosis. While inhibition of the Nrf2-dependent adaptive oxidative stress response enhanced the drug/TNF cytotoxicity, Nrf2 signaling did not affect CHOP expression. Both hepatotoxic drugs enhanced expression of the translational initiation factor EIF4A1, which was essential for CHOP expression and drug/TNF-mediated cell killing. Our data support a model in which enhanced drug-induced translation initiates PERK-mediated CHOP signaling in an EIF4A1 dependent manner, thereby sensitizing towards caspase-8-dependent TNF induced apoptosis.
Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNFα-mediated hepatotoxicity.
Specimen part, Treatment, Subject
View SamplesA growing body of evidence suggests that inflammatory cytokines have a dualistic role in immunity. In this study, we sought to determine the direct effects IFN-gamma on the differentiation and maturation of human peripheral blood monocyte-derived dendritic cells (moDC). Here, we report that following differentiation of human peripheral-blood monocytes into moDCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, interferon-gamma (IFN-gamma) induces moDC maturation and up-regulates the co-stimulatory markers CD80, CD86, CD95, and MHC Class I, enabling moDCs to effectively generate antigen-specific CD4+ and CD8+ T cell responses for multiple viral and tumor antigens. Interestingly, early exposure of monocytes to high concentrations of IFN-gamma promotes monocyte differentiation into macrophages, despite the presence of GM-CSF and IL-4. However, under low concentrations of IFN-gamma, monocytes continue to differentiate into dendritic cells possessing a unique gene-expression profile, resulting in impairments in subsequent maturation by IFN-gamma and an inability to generate effective antigen-specific CD4+ and CD8+ T cell responses compared to standard moDCs. Monocytes differentiated in the presence of low levels of IFN-gamma downregulate IFN-gamma receptor expression, impairing their response to an inflammatory rechallenge. These findings demonstrate the ability of IFN-gamma to impart differential programs on human moDCs which shape the antigen-specific T cell responses they induce. Timing and intensity of exposure to IFN-gamma can thus determine whether moDCs are tolerogenic or immunostimulating.
Timing and intensity of exposure to interferon-γ critically determines the function of monocyte-derived dendritic cells.
Specimen part, Subject
View SamplesWe report the application of single-cell-based RNA sequencing technology for high-throughput profiling of mice abdominal aortic aneurysm cell type dependent transcriptome. This study provides insight in the expression profile of aortic tissue macrophages in pathological conditions related to cardiovascular diseases. Overall design: Examination of cell specific transcriptomes in three pooled AAA single cell suspensions from three pooled Apolipoprotein deficient mice perfused for 28 days with angiotensin II
Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells.
Disease, Treatment, Subject
View SamplesThe hallmark of human cancer is heterogeneity, mirroring the complexity of genetic and epigenetic alterations acquired during oncogenesis. We extracted RNA of 34 cultured human ovarian carcinoma cell lines and performed expression microarrays so that cultured cell lines can represent in vivo human tumors.
Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer.
Specimen part, Cell line
View SamplesIt is well appreciated that reactive oxygen species (ROS) are deleterious to mammals, including humans, especially when generated in abnormally large quantities from cellular metabolism. Whereas the mechanisms leading to the production of ROS are rather well delineated, the mechanisms underlying tissue susceptibility or tolerance to oxidant stress remain elusive. Through an experimental selection over many generations, we have previously generated Drosophila melanogaster flies that tolerate tremendous oxidant stress and have shown that the family of antimicrobial peptides (AMP) is over-represented in these tolerant flies. Furthermore, we have also demonstrated that overexpression of even one AMP at a time (e.g. Diptericin) allows wild type flies to survive much better in hyperoxia. In the current study, we used a number of experimental approaches to investigate the potential mechanisms underlying hyperoxia tolerance in flies with antimicrobial peptide overexpression. We demonstrate that flies with Diptericin overexpression resist oxidative stress by increasing antioxidant enzyme activities and preventing an increase in ROS level after hyperoxia. Depleting the GSH pool using buthionine sulfoximine limits fly survival, thus confirming that enhanced survival observed in these flies is related to improved redox homeostasis. We conclude that a) AMPs play an important role in tolerance to oxidant stress; b) overexpression of Diptericin changes the cellular redox balance between oxidant and antioxidant, and c) this change in redox balance plays an important role in survival in hyperoxia.
Antimicrobial peptides increase tolerance to oxidant stress in Drosophila melanogaster.
Specimen part
View Samples