We used microarrays to detail transcriptional changes in the rat heart in response to doxorubicin, a chemotherapeutic drug known to induce cardiac disfunction/heart failure
Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Analysis of Drosophila STING Reveals an Evolutionarily Conserved Antimicrobial Function.
Specimen part, Treatment
View SamplesIn animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown, a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. Overall design: Analysis of mRNA expression in Drosophila OSS cells transfected with GFP dsRNA. One sample and replicate, used to establish the OSS baseline transcriptome in the presence of exogenous RNAi activity.
shutdown is a component of the Drosophila piRNA biogenesis machinery.
Specimen part, Subject
View SamplesAnti-TNF-alpha therapy has made a significant impact on the treatment of psoriasis. Despite being designed to neutralize TNF-alpha activity, the mechanism of action of these agents in the resolution of psoriasis remains unclear. The aim of this study was to better understand the mechanism of action of etanercept by examining very early changes in the lesional skin of psoriasis patients. 20 chronic plaque psoriasis patients were enrolled and received 50mg etanercept twice weekly. Skin biopsies were obtained before treatment and on days 1, 3, 7 and 14 post-treatment. Skin mRNA expression was analysed by microarray.
Early tissue responses in psoriasis to the antitumour necrosis factor-α biologic etanercept suggest reduced interleukin-17 receptor expression and signalling.
Specimen part, Disease, Subject
View SamplesIn the present study, we aimed to define the role of VDR in the overall lipid metabolism by transcriptomic and metabolomic analyses of human hepatocytes upon VDR activation by vitamin D (VitD)
The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes.
Specimen part, Cell line, Treatment
View SamplesComparison of transcriptome between control and Tcf1/Lef1-deficient hematopoietic stem cells (HSCs). Overall design: Flt3-negative, lineage-negative, Sca1+ and cKit+ cells (Flt3-LSKs) were sorted from bone marrow cells from control mice or those are deficient for Tcf1 and Lef1 transcription factors. Both genes were conditionally deleted using Vav-Cre
Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.
No sample metadata fields
View SamplesFinding diffrential gene expression gene expression in the livers of male mice after the deletion of Akt1 in th eliver of Akt2-/- mice. Overall design: mRNA was isolated from 4 indivdual livers of each group of mice of the same genotype. mRNAs from each group was pooled to generate 1 sample per each group. The 2 samples were used to generate cDNA libraries for RNA-seq.
Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms.
Specimen part, Cell line, Subject
View SamplesA few reports have implicated specific lncRNAs in cardiac development or failure, but precise details of lncRNAs expressed in hearts and how their expression may be altered during embryonic heart development or by adult heart disease is unknown. By comparing lncRNA profiles of normal embryonic (~E14), normal adult, and hypertrophied adult hearts we defined a distinct fetal lncRNA abundance signature that includes 157 lncRNAs differentially expressed compared to adults (fold-change = 50%, FDR=0.02), and which was only poorly recapitulated in hypertrophied hearts (17 differentially expressed lncRNAs; 13 of these observed in embryonic hearts). Analysis of protein-coding mRNAs from the same samples identified 22 concordantly and 11 reciprocally regulated mRNAs within 10 kb of dynamically expressed lncRNAs, reciprocal relationships of lncRNA and mRNA levels was validated for the Mccc1 and Relb genes using in vitro lncRNA knockdown in C2C12 cells. Network analysis suggested a central role for lncRNAs in modulating NFkappaB- and CREB1-regulated genes during embryonic heart growth and identified multiple mRNAs within these pathways that are also regulated, but independently of lncRNAs. Overall design: Cardiac polyadenylated RNA (mRNA and lncRNA) profiles were generated from C57BL/6J mouse hearts were generated on Illumina HiSeq 2000 instruments. 7 independent E13.5 hearts, 12 adult hearts (6 at 6 weeks of age, 6 at 16 weeks of age), 4 sham-operated hearts at 12 weeks of age, and 4 hearts after 4 weeks of pressure overload (TAC) at 12 weeks of age.
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
No sample metadata fields
View SamplesUnder defined differentiation conditions human embryonic stem cells (hESCs) can be directed toward a mesendodermal (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with G1 lengthening a divergent ciliation pattern emerged within the first 24 hours of induced lineage specification and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2. Nrf2 binds directly to upstream regions of the OCT4 and NANOG genes to promote their expression and represses NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events have been initiated do neural precursor markers get expressed at day 4. Thus we have identified a primary cilium-autophagy-Nrf2 (PAN) axis coupled to cell cycle progression that directs hESCs toward NE. Overall design: Transcriptome analysis of hESC-derived neuroectoderm and mesendoderm cells
Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate.
No sample metadata fields
View SamplesCells from three adult, wild-type, FVB hearts were separated into cardiomyocyte and nonmyocyte fractions using Langendorff perfusion, collagenase digestion and gravity filtration. Total RNA was prepared immediately from myocytes, while nonmyocytes were passaged twice to yield a culture from which total RNA was prepared. Overall design: 6 cardiac polyadenylated RNA (mRNA and lncRNA) and small RNA (microRNA) profiles of isolated cardiomyocytes (CM) and nonmyocytes (fibro) from 12-wk FVB/NJ mouse hearts were generated on Illumina HiSeq 2000 instruments.
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs.
No sample metadata fields
View Samples