Induction of dnFGFR2bfor 3 partially overlapping intervals at the early stages of otocyst morphogenesis revealed expected and novel up and downregulated genes that were validated by in situ hybridization analysis. Cell cyle genes were enriched in the downregulated datasets and human hearingloss genes were enriched in the upregulated datasets. Overall design: Differential mRNA expression analysis of pooled Rosa26rtTA/+ (control) and pooled Rosa26rtTA/+;Tg(tetO-s(dn)Fgfr2b)/+ (experimental) embryos induced with doxycycline for the indicated intervals. N=4 biological replicates per treatment (i.e. 4 pregnant females)
Spatial and temporal inhibition of FGFR2b ligands reveals continuous requirements and novel targets in mouse inner ear morphogenesis.
Subject
View SamplesSexual dimorphism in mammals is mostly attributable to sex-related hormonal differences in fetal and adult tissues; however, this may not be the sole determinant. Though genetically-identical for autosomal chromosomes, male and female preimplantation embryos could display sex-specific transcriptional regulation which can only be attributted to the differences in sexual chromosome dosage.
Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.
Sex, Specimen part
View SamplesThe organs of multicellular species are comprised of cell types that must function together to perform specific tasks. One critical organ function is responding to internal or external change but little is known about how responses are tailored to specific cell types or coordinated among them on a global level. Here we use cellular profiling of five Arabidopsis root cell types in response to a limiting resource, nitrogen, to uncover a vast and predominantly cell-specific response that was largely undetectable using traditional methods. These methods reveal a new class of cell-specific nitrogen responses. As a proof-of-principle, we dissected one cell-specific response circuit that mediates nitrogen-induced changes in root branching from pericycle cells. Thus, cellular response profiling links gene modules to discrete functions in specific cell types.
Cell-specific nitrogen responses mediate developmental plasticity.
Specimen part
View SamplesOvarian cancer is the fifth most common form of cancer in women in the United States. Epithelial ovarian cancer is the most common and is highly lethal. In 2014, there will be an estimated 21,980 new cases and 14,270 deaths from ovarian cancer in the United States. No major strides have been made to improve survival over the past decade. Ovarian cancer is notable for initial chemotherapy sensitivity (>75% response rates) using combination platinum and taxane chemotherapy following debulking surgery. However, eventually, the vast majority of these women (>75-80%) will have their cancer recur within 12 to 24 months after diagnosis and will die of progressively chemotherapy-resistant diseases. Transcription factors act as master switches of various biochemical pathways by regulating gene transcription. Large number of studies demonstrated the role of transcription factors in cancer development and progression. However, transcription factors involved in the pathogenesis of ovarian cancer have not been explored thoroughly. Therefore, we propose to using transcriptome profiling to generate a transcription factor gene signature for high-grade serous ovarian cancer.
ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells.
Specimen part, Disease
View SamplesCholesterol is one of the key molecules in mammals and the most striking examples of its deficiency are the inborn errors of cholesterol biosynthesis that manifest in severe whole body phenotypes. Liver, the principal site of cholesterol homeostasis, has rarely been investigated in these defects. We thus focused on the hepatocyte-specific deletion of lanosterol 14-demethylase (CYP51) catalyzing the rate-limiting step in the post-squalene part of cholesterol synthesis.
Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury.
Sex, Specimen part, Treatment
View SamplesTemporal changes in the embryo transcriptome between the blastocyst stage (Day 7) and initiation of elongation (Day 13) differ between in vivo- and in vitro-derived embryos and are reflective of subsequent developmental fate.
Transcriptome changes at the initiation of elongation in the bovine conceptus.
Specimen part
View SamplesThe aim of this study was to compare the transcriptome of the different regions of the oviduct between pregnant and cyclic heifers. After synchronizing crossbred beef heifers, those in standing oestrus (=Day 0) were randomly assigned to cyclic (non bred, n=6), or pregnant (artificially inseminated, n=11) groups. They were slaughtered on Day 3 and both oviducts from each animal were isolated and cut in half to separate ampulla and isthmus. Each portion was flushed to confirm the presence of an oocyte/embryo and was then opened longitudinally and scraped to obtain epithelial cells which were snap-frozen. Oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum. Microarray analysis of oviductal cells revealed that proximity to the corpus luteum did not affect the transcriptome of the isthmus, irrespective of pregnancy status. However, 2287 genes were differentially expressed (P<0.01) between the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum. Gene ontology revealed that the main biological processes overrepresented in the isthmus were synthesis of nitrogen, lipids, nucleotides, steroids and cholesterol as well as vesicle-mediated transport, cell cycle, apoptosis, endocytosis and exocytosis, whereas cell motion, motility and migration, DNA repair, calcium ion homeostasis, carbohydrate biosynthesis and regulation of cilium movement and beat frequency were overrepresented in the ampulla. In conclusion, large differences in gene expression were observed between the isthmus and ampulla that reflect morphological and functional characteristics of each segment.
Spatial differences in gene expression in the bovine oviduct.
Specimen part
View SamplesPurpose: Recurrent ASXL1 mutations are frequently observed in all spectrums of myeloid malignancies and published data suggests that ASXL1 mutations may be involved in leukemic transformation as a tumor suppressor. Yet the molecular mechanisms of cell desitiny regulated by ASXL1 are to be further delineated. Methods: mRNA profiles of wild-type (WT) and CRISPR/Cas9 induced ASXL1 mutated U937 cell lines were generated by next generation sequencing, using Illumina HiSeq2500. Sequence reads were trimmed to remove possible adapter sequences and nucleotides with poor quality at the ends. Remaining sequence reads were then aligned to the human reference genome (hg19) using Tophat2. Gene read counts were measured using FeatureCounts and FPKM values were calculated with cufflinks. edgeR was used to identify differentially expressed genes between conditions, and topGO was used for annotation (Alexa, Rahnenfuhrer, and Lengauer, 2006). Sample comparison for differential gene expression was as follows: WTblk and WT1 versus MT2, MT3, MT4, and MT5. Gene enrichment set analysis (GSEA) was conducted with KEGG, Biocarta, and Reactome pathway datasets (Subramanian et al., 2005). Results: ASXL1-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of ASXL1-mutated and WT U937 cells. Transcriptom analysis revealed that ASXL1 mutations decreased the expression of genes essential to myeloid differentiation, including CYBB and CLEC5A genes, which manifested in ASXL1-MT U937 cells as perturbed potential of differentiation compared with WT cells. Also, gene set enrichment analysis revealed that ASXL1 mutations masively affected gene sets relating to cell death and survival. Conclusion: By introduction of mutations into genome using the CRISPR/Cas9 system, we established ASXL1-mutated U937 cell lines. Our results indicated that ASXL1 mutations perturbed monocytic/phagocyte differentiation, which is a hallmark of myeloid malignancies, by down regulating genes essential to myeloid differentiation, including CYBB and CLEC5A, also massively affected multiple gene sets involving in cell survival. Overall design: mRNA profiles of wild type (WT) and ASXL1 mutated U937 cell lines were generated by deep sequencing using Illumina HiSeq2500
CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation.
Specimen part, Cell line, Subject
View SamplesThe lipocalin Apolipoprotein D (ApoD), known to protect the nervous system against oxidative stress (OS) in model organisms, is up-regulated early in the mouse brain in response to the ROS generator paraquat (PQ). However, the processes triggered by this up-regulation have not been explored.
Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cerebellum.
Sex, Specimen part
View SamplesHow chromatin controls transcription elongation and splicing is an open question. Here we determine the transcriptomic changes of cells partially depleted of core histones. For that we construct a cell line with Doxycycline-controlled levels of the histone regulatory protein SLBP (HCT-shSLBP). HCT-shSLBP is derived from the human colon cancer cell line HCT116.
Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
Specimen part, Cell line
View Samples