This SuperSeries is composed of the SubSeries listed below.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Cell line, Treatment
View SamplesWe compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Specimen part, Treatment
View SamplesWe compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Cell line, Treatment
View SamplesPrimary pre-B acute lymphoblastic (ALL) cells do not proliferate long-term ex vivo without the presence of stromal support. We developed and use an ex vivo co-culture model, consisting of mouse leukemic pre-B Bcr/Abl-expressing ALL cells grown with mitotically inactivated mouse embryonic fibroblasts (MEFs). This system provides a generic type of environmentally-mediated protection to the ALL cells, because when the ALL cells are treated with a moderate dose of a therapeutic drug, drug-resistant ALL cells can be recovered after a 1-2 week period of culture. Some of the factors produced by stromal cells that provide protection to ALL cells have been identified. However, it is unclear if the presence of drug-treated ALL cells affects the stromal fibroblasts. The current study was initiated to examine this using expression profiling on the irradiated MEFs.
Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells.
Specimen part
View SamplesEML1 and EML3 were previously shown to be histone readers involved in plant-pathogen interactions. To learn more about the developmental function of EML1 and EML3, we generated eml1 eml3 double mutant and showed that it had specific seed developmental phenotypes, including a capability to develop seed without fertilization. Next, we analyzed the mRNA expression of genes in the eml1 eml3 double mutant and compared it to its wild type. Differentially expressed (DE) genes in the mutant were identified and compared with DE of the mutants known to be involved in regulating seed development and in fertilization-independent endosperm development. Our results suggest that some targets are shared between EML histone readers and known regulators of seed development, such as MEA. Auxin response seems to be affected in both types of mutants. However, unlike MEA, EML proteins regulate auxin responsive genes not only in the endosperm, but also in the embryo. This capability makes EML proteins very good candidates for engineering apomictic seeds. Overall design: 3 eml1,eml3 double mutant samples and 3 WT samples
Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation.
Specimen part, Subject
View SamplesMice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. (
Transcription factor Sp3 knockout mice display serious cardiac malformations.
No sample metadata fields
View SamplesTo better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). SSEA4+ or Kit+ cells were loaded into 5-10 µm integrated fluidic circuits (IFCs) using Fluidigm C1 instrument. Single cells in IFCs were lysed and total RNA was harvested for polyadenylation selection, reverse transcription and PCR amplification. Library constructions were performed according to Fluidigm Library preparation with Nextera XT protocol and sequenced on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesThe transcriptomes of four subpopulations of beta cells isolated by FACS from five healthy human donors. Populations were defined using cell surface-labeling antibodies, avoiding the need for fixation. Overall design: There are 5 biological replicates of 4 different cell types. Each donor yielded all 4 subtypes.
Human islets contain four distinct subtypes of β cells.
Specimen part, Subject
View SamplesTo better understand human spermatogonial stem cells (SSCs), we profiled their transciptome and epigenome, which revealed the mechanism how human SSCs regulates their self-renewal versus differentiation dermination, as well as how latent pluripotency is established in human SSCs. Remarkly, we discovered signaling pathways (e.g. LIF, BMP, WNT) that differentially regulated self-renewal vesus differentiation in SSCs. We also discovered that SSCs repress core pluripotent factors (Sox2, Pou5f1 and Nanog) yet activate ancillary factors (e.g. Klf4, Mbd3, Tcf3, Sall4) transcriptionally and epigenetically. Overall design: Using SSEA4 as self-renewal marker and Kit as differentiating marker, we isolated self-renewal and differentiation SSCs by magnetic antibody cell sorting (MACS). Total RNA were extracted from those populations, and standard RNA sequencing libraries were prepared for sequnecing on a 50-cycle single end run.
Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development.
Specimen part, Subject
View SamplesParkinsons disease (PD) progresses relentlessly and affects five million people worldwide. Laboratory tests for PD are critically needed for developing treatments designed to slow or prevent progression of the disease. We performed a transcriptome-wide scan in 105 individuals to interrogate the molecular processes perturbed in cellular blood of patients with early-stage PD. The molecular marker here identified is strongly associated with risk of PD in 66 samples of the training set (third tertile cross-validated odds ratio of 5.7 {P for trend 0.005}). It is further validated in 39 independent test samples (third tertile odds ratio of 5.1 {P for trend 0.04}). The genes differentially expressed in patients with PD, or Alzheimers or progressive supranuclear palsy offer unique insights into disease-linked processes detectable in peripheral blood. Combining gene expression scans in blood and linked clinical data will facilitate the rapid characterization of candidate biomarkers as demonstrated here with respect to PD.
Molecular markers of early Parkinson's disease based on gene expression in blood.
No sample metadata fields
View Samples