Solid cancers develop within a supportive microenvironment that promotes tumor formation and continued growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically-engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), previous studies have demonstrated that microglia are important for glioma formation and maintenance. To identify the tumor-associated microglial factors that support glioma growth (gliomagens), we employed a comprehensive large scale discovery effort using optimized advanced RNA-sequencing methods. Candidate gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative RT-PCR and RNA FISH following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, Ccl5 was identified as a highly expressed chemokine in both genetically engineered Nf1 mouse and human optic gliomas. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, Ccl5 inhibition with neutralizing antibodies reduced Nf1 mouse optic glioma growth in vivo. Collectively, these findings establish Ccl5 as critical stromal growth factor in low-grade glioma maintenance relevant to future microglia-targeted therapies for brain tumors. Overall design: Nf1 optic glioma associated microglia from mice were flow sorted. Upregulated genes of glioma associated microglia were verified and further examined.
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth.
No sample metadata fields
View SamplesInterferon gamma treatment of macrophages results in hundreds if not thousands of alterations in gene expression and an antiviral state being established in these cells. Little is known about relationship between transcript synthesis, abundance and decay in macrophages during the first hours after interferon gamma treatment and how these factors influence the antiviral cellular phenotype.
An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway.
Age, Specimen part
View SamplesIn order to characterize gene expression networks linked to AT1 angiotensin receptors in the kidney, we carried out genome-wide transcriptional analysis of RNA from kidneys of wild-type (WT) and AT1A receptor-deficient mice (KOs) at baseline and after 2 days of angiotensin II infusion (1 ug/kg/min), using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays. At baseline, 405 genes were differentially expressed (>1.5X) between WT and KO kidneys. Of these, more than 80% were up-regulated in the KO group including genes involved in inflammation, oxidative stress, and cell proliferation. After 2 days of angiotensin II infusion in WT mice, expression of ~805 genes was altered (18% up-regulated, 82% repressed). Genes in metabolism and ion transport pathways were up-regulated while there was attenuated expression of protective genes against oxidative stress including glutathione synthetase and mitochondrial SOD2. Angiotensin II infusion has little effect on blood pressure in KOs. Nonetheless, expression of more than 250 genes was altered in kidneys from KO mice during angiotensin II infusion; 14% were up-regulated, while 86% were repressed including genes involved in immune responses, angiogenesis, and glutathione metabolism. Between WT and KO kidneys during angiotensin II infusion, 728 genes were differentially expressed; 10% were increased and 90% were decreased in the WT group. Differentially regulated pathways included those involved in ion transport, immune responses, metabolism, apoptosis, cell proliferation, and oxidative stress. This genome-wide assessment should facilitate identification of critical distal pathways linked to blood pressure regulation.
Gene expression profiles linked to AT1 angiotensin receptors in the kidney.
Sex, Specimen part, Treatment
View SamplesMale Sprague-Dawley rats 8 weeks old, were adrenalectomized, treated with 300ug/kg corticosterone or vehicle 3 days after surgery then sacrificed 1 hour later. Hippocampi were removed and RNA extracted and processed for sequencing at the Massachusetts General Hospital Nex-Generation Sequening Core. Overall design: Includes 6 cort treated and 6 control biological replicates
Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor.
No sample metadata fields
View Samples56 breast cancer cell lines were profiled to identify patterns of gene expression associated with subtype and response to therapeutic compounds. Overall design: Cell lines were profiled in their baseline, unperturbed state.
Modeling precision treatment of breast cancer.
No sample metadata fields
View SamplesInteraction of hematopoietic progenitors with the thymic stromal microenvironment induces them to proliferate, adopt the T cell fate, and asymmetrically diverge into multiple T lineages. Progenitors at various developmental stages are stratified among different regions of the thymus, implying that the corresponding microenvironments differ from one another, and provide unique sets of signals to progenitors migrating between them. The nature of these differences remains undefined. Here we use novel physical and computational approaches to characterize these stromal subregions, distinguishing gene expression in microdissected tissues from that of their lymphoid constituents. Using this approach, we comprehensively map gene expression in functionally distinct stromal microenvironments, and identify clusters of genes that define each region. Quite unexpectedly, we find that the central cortex lacks distinctive features of its own, and instead appears to function by sequestering unique microenvironments found at the cortical extremities, and modulating the relative proximity of progenitors moving between them.
Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation.
Specimen part
View SamplesAlthough corticosteroids remain a mainstay of therapy for UC, a meta-regression of cohort studies in acute severe ulcerative colitis (UC) showed that 29% of patients fail corticosteroid therapy and require escalation of medical management or colectomy.
Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis.
Specimen part
View SamplesExpression data from pancreatic cancer cell lines and non-neoplastic pancreatic cell line HPDE
Cyclooxygenase-deficient pancreatic cancer cells use exogenous sources of prostaglandins.
Sex, Specimen part, Disease, Cell line
View SamplesGene expression analysis of pancreatic cancer associated fibroblasts and control fibroblasts
Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts.
Specimen part, Disease
View SamplesA c-Src inhibitor blocks estrogen (E2)-induced stress and converts E2 responses from inducing apoptosis to growth stimulation in E2-deprived breast cancer cells. A reprogrammed cell line, MCF-7:PF, results with features of functional estrogen receptor (ER) and over-expression of insulin-like growth factor-1 receptor beta (IGF-1Rß). We addressed the question of whether the selective ER modulator 4-hydroxytamoxifen (4-OHT) could target ER to prevent E2-stimulated growth in MCF-7:PF cells. Selected expression of mRNA was measured through real-time RT-PCR. Global gene expression was analyzed by microarray and RNA-seq analysis. Unexpectedly, both 4-OHT and E2 stimulated cell growth in a concentration-dependent manner. Global gene expression analysis showed a remarkable overlap in genes regulated in the same direction by E2 and 4-OHT. Pathway enrichment analysis of the 280 genes commonly deregulated by 4-OHT and E2 revealed functions mainly related to membrane, cytoplasm, and metabolic processes. Further analysis of 98 up-regulated genes by both 4-OHT and E2 uncovered a significant enrichment in genes associated with membrane remodeling, cytoskeleton reorganization, cytoplasmic adapter proteins, cytoplasm organelles proteins, and related processes. 4-OHT was more potent than E2 to up-regulate some membrane remodeling molecules, such as EHD2, FHL2, HOMER3 and RHOF. In contrast, 4-OHT acted as an antagonist to inhibit expression of the majority of enriched membrane-associated genes in wild-type MCF-7 cells. Long-term selection pressure has changed the cell population responses to 4-OHT. Membrane-associated signaling is critical for 4-OHT-stimulated cell growth in MCF-7:PF cells. This study provides a rationale for the further investigation of targeted therapy for tamoxifen resistant patients. Overall design: Wild-type MCF-7 cells were treated with vehicle control (0.1% ethanol), E2 (10-9 mol/L) and 4-OHT (10-6 mol/L) respectively for 24 hours.
Identification of gene regulation patterns underlying both oestrogen- and tamoxifen-stimulated cell growth through global gene expression profiling in breast cancer cells.
No sample metadata fields
View Samples