Solid cancers develop within a supportive microenvironment that promotes tumor formation and continued growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically-engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), previous studies have demonstrated that microglia are important for glioma formation and maintenance. To identify the tumor-associated microglial factors that support glioma growth (gliomagens), we employed a comprehensive large scale discovery effort using optimized advanced RNA-sequencing methods. Candidate gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative RT-PCR and RNA FISH following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, Ccl5 was identified as a highly expressed chemokine in both genetically engineered Nf1 mouse and human optic gliomas. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, Ccl5 inhibition with neutralizing antibodies reduced Nf1 mouse optic glioma growth in vivo. Collectively, these findings establish Ccl5 as critical stromal growth factor in low-grade glioma maintenance relevant to future microglia-targeted therapies for brain tumors. Overall design: Nf1 optic glioma associated microglia from mice were flow sorted. Upregulated genes of glioma associated microglia were verified and further examined.
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells.
Cell line
View SamplesChildren with acute measles were admitted to the University Teaching Hospital in Lusaka, Zambia. Peripheral blood was collected at hospital entry, discharge and 1-month follow-up. Control samples were also collected from uninfected children. All children were HIV negative.
Gene expression changes in peripheral blood mononuclear cells during measles virus infection.
No sample metadata fields
View SamplesHuman CD14+ monocytes were isolated and grown in GM-CSF and IL-4 for six days. The cells were then infected with measles virus, Chicago-1 strain, and RNA was isolated at 3, 6, 12, and 24 hours post-infection.
Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens.
No sample metadata fields
View SamplesMucoepidermoid carcinomas (MEC) is the most common salivary gland malignancy. To date, advanced and nonresectable MEC have poor prognosis and no effective treatment. The CRTC1-MAML2 fusion oncogene, which is associated with more than 50% of MEC, consists of the N-terminal CREB-binding domain of the CREB transcriptional co-activator CRTC1 and the C-terminal transcriptional activation domain of the Notch transcriptional co-activator MAML2. CRTC1-MAML2 fusion was found to interact with CREB and constitutively activate their transcriptional targets. To investigate the contribution of the transcription factor CREB to mediate the fusion target gene expression, gene expression profiling analysis were performed in two salivary gland tumor cell lines (including fusion-positive H3118 MEC cells and fusion-negative HSY parotid adenocarcinoma cells) before and after CREB knockdown. This study demonstrated that CRTC1-MAML2 co-activation of CREB is a major mechanism underlying CRTC1-MAML2-mediated transcriptional regulation.
Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells.
Cell line
View SamplesMucoepidermoid carcinomas (MEC) is the most common salivary gland malignancy. To date, advanced and nonresectable MEC have poor prognosis and no effective treatment. The CRTC1-MAML2 fusion oncogene, which is associated with more than 50% of MEC, consists of the N-terminal CREB-binding domain of the CREB transcriptional co-activator CRTC1 and the C-terminal transcriptional activation domain of the Notch transcriptional co-activator MAML2. CRTC1-MAML2 fusion was found to interact with CREB and constitutively activate their transcriptional targets. To investigate the genes and pathways regulated by CRTC1-MAML2 fusion oncogene, gene expression profiling analysis were performed in human fusion-positive MEC cells before and after knockdown of both CRTC1-MAML2 and MAML2 as well as in human fusion-negative salivary gland cancer cells before and after MAML2 knockdown only. This study revealed specific transcriptional program induced by the CRTC1-MAML2 fusion oncogene, which potentially mediates CRC1-MAML2 functions in MEC initiation and maintenance. The information will be useful for developing new approaches to block CRTC1-MAML2 fusion-expressing MEC.
Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells.
Cell line
View SamplesWe previously observed reduced graft survival for kidney transplants having interstitial fibrosis with subclinical inflammation, but not fibrosis alone, on 1-year protocol biopsy. The current study aimed to determine whether fibrosis with inflammation at 1 year is associated with renal functional decline in a low-risk transplant cohort and to characterize the nature of the inflammation. Subjects were living-donor, tacrolimus/mycophenolate-treated transplant recipients without overt risk factors for reduced graft survival (n=151). Transplants with normal histology (n=86) or fibrosis alone (n=45) on 1-year protocol biopsy had stable renal function between 1 and 5 years, while those having fibrosis with inflammation (n=20) had declining glomerular filtration rate and reduced graft survival. Immunohistochemistry confirmed increased interstitial T-cells and macrophages/dendritic cells in the fibrosis with inflammation group. Gene expression was performed on a subset of biopsies in each group and demonstrated increased expression of transcripts related to innate and cognate immunity in transplants having fibrosis with inflammation. Pathway- and pathological process-specific analyses of microarray profiles revealed that, in fibrosis with inflammation, over-expressed transcripts were enriched for potentially damaging immunological activities including Toll-like receptor signaling, antigen presentation/dendritic cell maturation, interferon gamma-inducible response, cytotoxic T lymphocyte-associated and acute rejection-associated genes. Thus, fibrosis with inflammation in 1-year protocol biopsies is associated with reduced graft survival and function and with a rejection-like gene expression signature even in recipients with no clinical risk for inferior outcome. Early interventions aimed at altering rejection-like inflammation may favor improved long-term KTx survival.
Fibrosis with inflammation at one year predicts transplant functional decline.
No sample metadata fields
View SamplesIn the analysis of peripheral blood gene expression, timely processing of samples is essential to ensure that measurements reflect in vivo biology, rather than ex vivo sample processing variables. The effect of processing delays on global gene expression patterns in peripheral blood mononuclear cells (PBMC) was assessed by isolating and stabilizing PBMC-derived RNA from three individuals either immediately after phlebotomy or following a 4 hour delay. RNA was labeled using NuGEN Ovation labeling and probed using the Affymetrix HG U133plus 2.0 GeneChip. Comparison of gene expression levels (p<0.05 and 2-fold expression change) identified 327 probe sets representing genes with increased expression and 46 indicating decreased expression after 4 hours. The trends in expression patterns associated with delayed processing were also apparent in an independent set of 276 arrays of RNA from human PBMC samples with varying processing times. These data indicate that the time between sample acquisition, initiation of processing, and when the RNA is stabilized should be a prime consideration when designing protocols for translational studies involving PBMC gene expression analysis.
Gene Expression Profiles from Peripheral Blood Mononuclear Cells Are Sensitive to Short Processing Delays.
Specimen part, Subject, Time
View SamplesLuteinising hormone (LH) is a key regulator of male fertility through its effects on testosterone secretion by Leydig cells. Mice in which the LH receptor is knocked out (LuRKO) show reduced testicular size, reduced testosterone, elevated serum LH, and a spermatogenic arrest that can be rescued by administration of testosterone. This study examines the onset of spermatogenic arrest in LuRKO males using transcriptional profiling of developing mutant and control testes. We also examine the initial stages of testosterone rescue of the phenotype, in order to identify key upstream regulators of testosterone-dependent spermatogenesis.
Transcriptional profiling of luteinizing hormone receptor-deficient mice before and after testosterone treatment provides insight into the hormonal control of postnatal testicular development and Leydig cell differentiation.
Specimen part
View SamplesExperiment 1: U133A arrays (2) hybridized to duplicate sscDNA samples prepared from 20 ng Clontech UHR RNA
Increased DNA microarray hybridization specificity using sscDNA targets.
No sample metadata fields
View Samples