The relevance of DNA-dependent poly-ADP ribose production for neuronal differentiation of adult stem- and progenitor cells from the SVZ was studied. To identify genes whose up- or downregulation during neuronal differentiation requires the activity of poly-ADP-Ribosylase (PARP) 1 or 2, SVZ-derived adult neurosphere cultures were differentiated in the presence or absence of Olaparib.
MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1.
Treatment
View SamplesConstitutive Wnt activation upon loss of Adenoma polyposis coli (APC) acts as main driver of colorectal cancers (CRC). Targeting Wnt signaling has proven difficult because the pathway is crucial for homeostasis and stem cell renewal. To distinguish oncogenic from physiologic Wnt activity, we have performed comprehensive transcriptome and proteome profiling in human colon organoids. Culture in the presence or absence of exogenous ligand allowed us to discriminate receptor-mediated signaling from the effects of CRISPR/Cas9 induced APC loss. We could catalogue two non-overlapping molecular signatures that were stable at distinct levels of stimulation. Newly identified markers for normal colon stem/progenitor cells and adenomas were validated by immunohistochemistry and flow cytometry. We found that oncogenic Wnt signals are associated with good prognosis in tumors of the consensus molecular subtype 2 (CMS2). In contrast, receptor-mediated signaling was linked to CMS4 tumors and poor prognosis. Together, our data represent a valuable resource for biomarkers that allow more precise stratification of Wnt responses in CRC. Overall design: Culturing normal and CRISPR/Cas9 engineered APC mutant isogenic organoid lines in the presence or absence of Wnt-stimulation, followed by transcriptome and proteome profiling allowed for the stratification of physiologic and oncogenic Wnt responses.
Human colon organoids reveal distinct physiologic and oncogenic Wnt responses.
Subject
View SamplesConstitutive Wnt activation upon loss of Adenoma polyposis coli (APC) acts as main driver of colorectal cancers (CRC). Targeting Wnt signaling has proven difficult because the pathway is crucial for homeostasis and stem cell renewal. To distinguish oncogenic from physiologic Wnt activity, we have performed comprehensive transcriptome and proteome profiling in human colon organoids. Culture in the presence or absence of exogenous ligand allowed us to discriminate receptor-mediated signaling from the effects of CRISPR/Cas9 induced APC loss. We could catalogue two non-overlapping molecular signatures that were stable at distinct levels of stimulation. Newly identified markers for normal colon stem/progenitor cells and adenomas were validated by immunohistochemistry and flow cytometry. We found that oncogenic Wnt signals are associated with good prognosis in tumors of the consensus molecular subtype 2 (CMS2). In contrast, receptor-mediated signaling was linked to CMS4 tumors and poor prognosis. Together, our data represent a valuable resource for biomarkers that allow more precise stratification of Wnt responses in CRC. Overall design: Culturing normal and CRISPR/Cas9 engineered APC mutant isogenic organoid lines in the presence or absence of Wnt-stimulation, followed by transcriptome and proteome profiling allowed for the stratification of physiologic and oncogenic Wnt responses.
Human colon organoids reveal distinct physiologic and oncogenic Wnt responses.
Subject
View SamplesGene expression patterns in the SVZ, 48 h after an ischemic lesion caused by permanent middle cerebral artery occlusion (MCAO)
Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells.
Sex, Specimen part
View SamplesStem samples of wildtype Columbia plants and the wox4-1 mutant (Gabi_462G01) were analyzed in order to draw a connection between general transcriptomic changes during interfascicular formation in the wildtype and WOX4-dependent gene regulation during this process.
WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis.
Specimen part
View SamplesIn-vivo induced establishment and activity of the interfascicular cambium in Arabidopsis thaliana stems under NPA treatments.
WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis.
Specimen part, Treatment
View SamplesWe tamoxifen treated 8-12 week old mice that had floxed alleles of the following: 1) both Apc alleles (giving rise to Apc truncation/inactivation); 2) both Cdx2 alleles (giving rise to Cdx2 inactivation; 3) one Braf allele, that upon Cre-mediated recombination gives a Braf V600E mutant allele (details below), and 4) the combination of both the Cdx2 alleles and the BrafV600E allele. All four of those groups also had a CDX2P-CreERT2 transgene that expresses Cre recombinase fused to a tamoxifen-regulated fragment of the estrogen receptor ligand binding domain. CreERT2 expression occurs only in tissues where the Cdx2 gene is expressed, which is almost exclusively in adult mouse cecum and colon epithelium. A fifth group of mice had the floxed Cdx2 alleles, but no CDX2P-CreERT2 gene. Treating the mice having CDX2P-CreERT2 with tamoxifen permits the Cre recombinase to enter the cell nucleus and recombine the Apc, Braf, and/or Cdx2 alleles containing loxP sequence elements. Mice were treated with intraperitoneal injection of tamoxifen dissolved in corn oil. Three mice per group were used. The control mice did not develop tumors or any morphological or histological changes in their epithelium, but their colons were used to create the 3 control samples. To obtain the BrafV600E allele we used a genetically engineered mouse line previously described by Dankort et al. (Genes Dev 2007, 21:379-84) that can express the BrafV600E mutant protein following Cre-mediated recombination. The Braf(CA) (Braf-Cre-activated) allele mice carry a gene-targeted allele of Braf, where Braf sequences from exons 15-18 are present in the normal mouse Braf intron 14, followed by a mutated exon 15 (carrying the V600E mutation). The exon 15-18 sequence element is flanked by loxP sites. In the absence of Cre-mediated recombination, the Braf(CA) allele expresses a wild type Braf protein. Following Cre-mediated recombination, the Braf exon 15-18 element is removed, and the Braf(CA) allele then encodes the Braf V600E protein (from the introduced mutated exon 15). RNA was purified from tumor or normal tissue, and targets for Affymetrix arrays were synthesized from the mRNAs. We used Affymetrix Mouse Gene 2.1 ST arrays, which hold 41345 probe-sets, but we largely analyzed just those 25216 probe-sets that were mapped to Entrez gene IDs. Raw data was processed with the Robust Multi-array Average algorithm (RMA). Data is log2-transformed transcript abundance estimates. We fit a one-way ANOVA model to the five groups of samples. We supply a supplementary excel workbook that holds the same data as the data matrix file, but also holds the probe-set annotation at the time we analyzed the data, and some simple statistical calculations, which selects subsets of the probe-sets as differentially expressed between pairs of groups, as well as significant Cdx2-/- by Braf V600E interactions. It also gives the homologous human gene IDs we used for enrichment testing, which were 1-to-1 best homologs according to build 68 of NCBI's Homologene. A second supplementary sheet shows the data we enrichment tested after collapsing to distinct human homologs, joins of the results of tests with GSE4045 data and of tests with TCGA data to the mouse genes, and the intersections of selected genes in those data set with our gene selections in mouse. Consumers should consider obtaining more up-to-date probe-set annotation for the array platform.
BRAF<sup>V600E</sup> cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis.
Sex, Treatment
View SamplesThis study compares cardiac induction time-courses using (i) wild-type hESCs subjected to a standard directed differentiation protocol, (ii) EOMES knockout hESCs subjected to the same protocol, and (iii) EOMES KO / TET-ON hESCs subjected to a TET-ON protocol.
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.
Cell line, Time
View SamplesHuman ES cells respond to activation of the BMP and WNT signaling by upregulating target genes. A 4h time-point following signaling factor stimulation was chosen to reveal immediate-early induced genes which are likely to be direct targets.
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.
Cell line, Treatment, Time
View SamplesCurrently there is a lack of effective therapies which result in long-term durable response for patients presenting with advanced and metastatic clear cell renal cell carcinoma (ccRCC). This is due in part to a lack of molecular factors which can be targeted pharmacologically. In order to identify novel tumor-specific targets, we performed high throughput gene array analysis screening numerous patient ccRCC tumor tissues across all stages of disease, and compared their gene expression levels to matched normal kidney. Our results identify a number of genes which demonstrate tumor-specific overexpression, and may present as novel targets for therapy.
Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4.
Specimen part
View Samples